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Craig A. Shue

A BETTER INTERNET WITHOUT IP ADDRESSES

The Internet has evolved from a small network of research machines into a world-wide network

for sharing information. The importance of the Internet on commerce, industry, and education has

become so profound that world leaders have labeled Internet access as a utility vital to civilization.

With such a vitally important role, network researchers must ensure that the Internet is able to

expand and scale to serve the needs of the generations to come. To do so, we must overcome two

of the most pressing technical obstacles. First, we are rapidly running out of available addresses to

identify machines on the Internet. The Internet Protocol version 4, or simply IPv4, can uniquely

identify 4.3 billion machines. However, about 88% of the IPv4 address space has been assigned

with projections of exhaustion in as little as two years. The second major hurdle is that routers,

which forward packets from a source machine to a destination, may soon not be able to store all the

required packet forwarding state while still providing expedient packet delivery. While researchers

have previously examined these issues, each of the previous works addresses only a subset of these

problems rather than addressing the difficulties holistically. In this dissertation, we seek to address

these top concerns in a consolidated manner while allowing for Internet evolvability. The architecture

we propose uses host names already used by Internet users for identifying machines and translating

them to autonomous system numbers (ASNs), a well-accepted identifier for administrative domains

in the Internet. While the host names provide a vast number of end-host identifiers, the ASNs offer

an order of magnitude faster packet forwarding performance at the routers. Combined, they ensure

that the Internet can meet our demands for decades to come.
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1

Introduction

The Internet has evolved from a small network of research machines into a world-wide network for

sharing information. The importance of the Internet on commerce, industry, and education has

become so profound that world leaders have labeled Internet access as a vital utility. With such a

vitally important role, network researchers must ensure that the Internet is able to expand and scale

to serve the needs of the generations to come. To do so, we must overcome several difficult technical

obstacles, such as address space exhaustion and decreased routing scalability.

From a structural standpoint, the Internet simply links networks of computers. These networks

may be composed of extremely different types of machines (hosts), communication links, and under-

lying protocols. For example, a host on a wireless network may use radios and the 802.11g protocol

to communicate with another host on a network that uses optical cables and Ethernet as the under-

lying protocol. These hosts may be running different operating systems, such as Windows or Linux.

The goal of internetworking is to allow heterogenous hosts on diverse networks to communicate with

each other. The protocol that makes internetworking possible is the Internet Protocol version 4

(IPv4 ). IPv4 accomplishes this goal by providing a uniform addressing scheme. Applications use

IPv4 addresses to send small groups of information, called packets, to each other. Each IPv4 packet

has 4-byte sender and receiver addresses. The routers in the Internet use the destination address to

forward packets towards their destination.

A collection of contiguously assigned IP addresses are referred to as a prefix. Each organization

that wishes to connect to the Internet must acquire one or more IPv4 prefixes. All hosts within the

organization’s domain must derive their addresses out of the organization’s prefix ranges. Prefixes

make it possible to do efficient routing since a router can use a single prefix entry to represent many

machines. Without such aggregation, routers would have to store a unique entry for each of the

approximately 4.3 billion possible IP addresses, which would make it impossible to forward packets

fast enough to keep up with demand.

While IPv4 addresses are carefully designed to ensure routing scalability, they lack any semantic

1



1. Introduction 2

value, making them difficult for humans to use and remember. Mnemonic host names eliminate

this shortcoming, yet routers only understand IPv4 addresses. Accordingly, host names must be

translated to IP addresses. The Domain Name System (DNS) provides this mapping scalably. As

an example, when a user types www.google.com in a Web browser, the DNS will translate it to one

of Google’s Web servers, say 74.125.95.104, allowing communication to take place. Together, the

IP and DNS are critical infrastructure for typical Internet usage.

Several pressing issues surround routing and addressing that threaten the viability of the con-

tinued expansion of the Internet. The two primary ones are:

• We are running out of IPv4 address space: The shortage of address space in IPv4 has

long been recognized by the community. In theory, the IPv4 address space can be allocated to

232 (approximately 4.3 billion) hosts. However, in practice, imperfect prefix allocation causes

significantly fewer addresses to be usable. Even if every IPv4 address were to be allocated,

this space will not be sufficient given that the world population is reaching 6.5 billion and that

many users possess multiple Internet-enabled devices. This limitation led to the development

of Internet Protocol version 6 (IPv6) [32], which uses 128 bits for host addresses. This allows

2128 (about 3.4× 1038) hosts to be uniquely identified. Unfortunately, the IPv6 adoption rate

has been far from stellar. According to the Route Views Project [120], which allows us to

see the number of prefixes used in the Internet, about 224, 148 IPv4 prefixes were in use in

Internet routing tables in January 2007. During that same month, only 807 IPv6 prefixes were

used, representing less than 0.4% of the IPv4 usage and indicating that few organizations use

it. Therefore, we must investigate alternative addressing schemes that offer greater benefits in

the context of other Internet concerns, especially the one we discuss next.

• The routers may soon be unable to forward packets at nanosecond speeds: To

meet modern bandwidth requirements, routers must be able to forward each packet in tens to

hundreds of nanoseconds. To do so, routers must store all the IP prefixes in high-speed memory,

typically Static Random Access Memory (SRAM). Unfortunately, high-speed routers are a

low-volume niche market without the economies of scale required to drive capacity increases

in SRAM memory [77]. With slow SRAM capacity growth, the alarming rate of growth in

IPv4 prefixes may soon make it impossible for the routers to keep up with the required packet

forwarding speeds [77]. The severity of the problem can be seen in the exponential growth in

the number of prefixes handled by modern routers in the core of the Internet. Specifically, there

were fewer than 50, 000 IPv4 prefixes in 1997. Five years later, in 2002, this more than doubled

to 113, 614 prefixes. The prefixes again nearly doubled in the next five years with routers

handling 224, 148 prefixes in 2007. With the larger address space of IPv6, these concerns are

expected to become ever more acute. In particular, our own measurements indicate that the

expanded address space of IPv6 comes at a premium, requiring more time to forward packets

and more memory to store the prefixes [105].
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The research community has been actively pursuing solutions to each of the above problems. For

example, the work by Subramanian et al. [115] proposed a scalable alternative to the Border Gateway

Protocol (BGP), the Internet routing protocol used to route packets in the core of the Internet.

Similarly, the work by Francis et al. [44] used Network Address Translation (NAT) to solve address

exhaustion. In the work by Caesar et al. [24], the authors explored replacing host addresses with

flat labels, which offer practically unlimited addresses, to determine if such an approach would scale.

Though differing in their goals, the common thread across these examples is that they trade concerns

of immediate deployment for long term benefits and in turn require fundamental changes to the key

protocols used by the Internet entities. Unfortunately, none of these proposals provides a holistic

solution. In this dissertation, we develop an architecture that provides a comprehensive solution to

the addressing and routing scalability concerns, leveraging these previous works on occasion. Our

architecture has the following properties:

1. Solves Address Space Exhaustion: Our architecture solves address exhaustion concerns

and provides an even larger address space than IPv6. The key aspect of our architecture that

makes this possible is that it uses fully qualified domain names (for simplicity, we refer to these

as host names or names subsequently) to identify hosts. While IPv6 offers 2128 addresses, we

offer 37255 addresses, orders of magnitude more.

2. Ensures Scalability of Packet Forwarding: Host names solve address exhaustion concerns

but do not lend themselves to scalable routing because they far exceed the number of IPv4

prefixes. Specifically, in January 2007, there were 224, 148 IPv4 prefixes. In contrast, there

were 128 million domains at that time with many hosts in each domain [123]. We translate host

names into a small number of routing locators to ensure high-performance packet forwarding.

The routing locators reduce router memory requirements, allowing faster packet forwarding

speeds than today’s IPv4 while ensuring scalability for decades to come.

3. Embraces Evolution of Host Addressing: The separation of routing from host identifi-

cation allows our architecture to support multiple addressing schemes for end hosts without

requiring modifications to the core Internet routing. This is useful in the light of other special-

purpose addressing schemes, such as HIP [81], which provides strong host authenticity, or

FARA [27] and i3 [114], which focus on host mobility.

4. Supports Unified Intra-Domain Security: Intra-domain protocols, such as Dynamic Host

Control Protocol (DHCP), suffer from various security concerns. Even though solutions exist

for individual protocols, no solution provides support across intra-domain protocols. Recog-

nizing that a mechanism to authenticate each host would provide a fundamental building block

for addressing intra-domain security concerns, we tie host names to cryptographic credentials

called certificates. The certificate uniquely identifies each host, preventing impersonation. We

then use well-known cryptographic operations to provide a unified framework for intra-domain

security.
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Our architecture is based on the observation that most hosts in the Internet have two identifiers

associated with them: IP addresses and host names. We question whether this redundancy is

necessary. Since IP addresses are not human-friendly, we began our exploration with the idea of using

only host names as addresses for hosts. This concept is attractive on many counts. First, it offers a

large address space: DNS host names can be up to 255 characters long, with acceptable characters

including letters, numbers, and hyphens. This allows 37255 possible host names as compared to the

2128 available under IPv6. Second, this scheme requires no change on the part of Internet users, who

are accustomed to referring to servers by their names. Third, eliminating the translation from host

names to IP addresses eliminates DNS lookup overheads and the possibility for mapping errors. We

envisioned an Internet where end hosts are addressed simply by names and routers forward packets

based on the name of the destination. Initially, it seemed that this would support routing scalability

because, just as IPv4 addresses are aggregated into prefixes, host names can be aggregated into the

domains in which they belong. When we evaluated this architecture by examining the scalability of

packet forwarding, we found that host names could cost the routers up to three times more packet

forwarding time and one to two orders of magnitude more memory to store the routing tables. These

results were not surprising given that there were 224, 148 IP prefixes and three orders of magnitude

more (128 million) domains in 2007. However, we had hoped that some optimizations, including

caching the most popular domain names at local routers, would help. In the end, we concluded that

while host names are useful for host identification, they are insufficient for routing.

Next, we looked for alternatives to scale Internet routing when names were used to identify

end hosts. We leaned on locator-identifier separation, an approach the networking community has

recently explored to curtail growth in IPv4 prefixes. The basic idea behind this approach is to

translate host identifiers to routing locators at the point where packets enter the network. The

routers in the core of the Internet forward packets only on routing locators. The scalability of this

approach stems from the expectation that there will be far fewer locators than host identifiers and

that the locators will be immune to factors that cause growth in the routing tables today. As an

example of the factors that cause growth in the number of IPv4 prefixes, many organizations today

split their IPv4 prefixes in an attempt to receive traffic over multiple links. This technique, called

load balancing, causes multiple prefixes to exist in the routing table where there would only have been

one. This increases the load on all routers in the Internet. Similarly, an organization may acquire

its prefix range from its provider ISP and then choose to have another provider ISP, for increased

availability under link failures. This practice, called multi-homing, causes an increase in the number

of prefixes in all routers because the new provider ISP cannot aggregate the organization’s prefix

with its own. Today, load balancing and multi-homing are significant contributors to routing table

growth [23]. In particular, multi-homing is the biggest cause for concern about routing scalability

today.

A key issue in leveraging the locator-identifier separation concept is the choice of a locator.

In this dissertation, we examine the identifiers already used by networks in modern routing in
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order to pick an adequate locator. Specifically, networks controlled by a single administrative entity,

called Autonomous Systems (ASes), are associated with a unique identifier, the Autonomous System

Number (ASN). The ASN is used by the inter-domain routing protocol, BGP, to avoid accidentally

sending packets into endless loops between routers. The ASNs have two properties that make them

attractive as routing locators. First, there are an order of magnitude fewer ASNs than IP prefixes.

According to the Route Views Project [120], just over 25,000 ASNs were represented in the BGP

routing announcements in an April 2007 snapshot of BGP data1. In contrast, 233, 500 unique IPv4

prefixes were present in BGP routing tables. Second, the fixed length of the ASNs is amenable to

faster lookup algorithms, unlike IP prefixes that require a more expensive longest prefix match.

We find that if a router were to forward packets on ASNs, packet forwarding would be an order of

magnitude faster than IPv4. Further, the routers would require less than one-third of the memory

required for IPv4 forwarding. We conclude that our architecture will solve address exhaustion

concerns in the Internet while making routing in the core of the Internet an order of magnitude

faster than today. However, before ASNs can be adopted, we must carefully address the issue of

ASN growth. Specifically, we must ascertain that the factors that cause exponential growth in IPv4

prefixes would not hurt the future scalability of our scheme. Upon examining this aspect in detail,

we find that ASNs would be less susceptible to the growth factors in IPv4, indicating that they will

continue to scale Internet routing for decades to come.

In pursuing this architecture, we must have cooperation from the Internet stake-holders. To

support ASN and host-based lookups, router manufacturers must update the protocols used by their

routers and redesign the hardware used in packet forwarding. In turn, Internet Service Providers

(ISPs) must adopt the newly-designed routers. Further, operating system vendors must update

their network stacks to enable end-host support for the new packet headers. In order to enable such

large-scale cooperation, we must focus on incentives and techniques to cope with partial deployment.

ASN-based routing allows for faster packet forwarding at the routers without expensive hardware.

The reduced hardware costs and motivation from routing vendors to bring routers that can route

on ASNs to market will be critical to adoption. Once a core locator infrastructure is in place,

organizations can avoid address exhaustion concerns by upgrading their hosts to support name-

based headers. While in transition, our architecture supports several partial deployment strategies

to ensure proper interaction with legacy networks and hosts.

1.1 Dissertation Road-map

We organize the content of this dissertation in the following four components. Some of these com-

ponents span multiple chapters.

1The total number of ASNs allocated to different organizations worldwide stands at around 39,000 [95].
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1.1.1 IPv6 Scalability

With concerns about the performance of IPv6 routing, we examine how IPv6 would perform if it

were widely deployed. To do so, we create software implementations of popular lookup algorithms

used by routers and compare the performance and memory requirements of IPv4 with IPv6. We

additionally simulate a growth in the number of IPv6 and analyze the impact of other growth

factors, such as multi-homing and load balancing, on IPv6. We find that modern lookup algorithms

are ill-suited for IPv6, yielding steep performance degradation and memory overheads. We then

tailor an existing algorithm to lessen these overheads in deploying IPv6 with some success. In spite

of this enhancement, we find the performance and memory requirements of IPv6 to be worse than

IPv4 in all our measurements. In particular, the best algorithm for IPv6 still requires 8% more

time to perform lookups and 45% more memory than an equivalent operation in IPv4. We conclude

that while IPv6 solves the address space crisis, it does so at the cost of worse packet forwarding

performance and increased router memory consumption.

1.1.2 Routing on Host Names

Next, we examine the scalability of packet forwarding when end-hosts are identified by their names

instead of IP addresses. We create software implementations of popular forwarding algorithms for

both IP and host names and record the forwarding times and the amount of memory required by

each approach. In constructing the forwarding table, we aggregate host names into their domains to

reduce the number of entries required. We find that even on a small number of domains, IPv4 per-

formance greatly exceeds the performance we get on host names. Further, the memory requirements

for forwarding tables based on host names exceed the memory capacity of routers. While we explore

approaches to attempt to reduce these requirements, we conclude that forwarding packets directly

on host names is not a viable approach.

In the above experiments, we assumed that host names could be aggregated into domains. For

example, the host names www.cs.indiana.edu and www.informatics.indiana.edu can both be

aggregated as indiana.edu because they are co-located at indiana.edu. This aggregation would

reduce memory requirements at the routers. However, this aggregation may not always be possible.

For example, us.ibm.com and asia.ibm.com cannot be aggregated into ibm.com because they are

topologically separated with different routing paths. This is a big concern for routing based on

host names because with the latter case a single entry for a domain would be unable describe the

routes for all the hosts. Upon exploring this issue further, we find that, in practice, all hosts in most

domains do tend to topologically close to each other. However, there are striking exceptions: some

domains have hosts from thousands of different networks in the Internet. Overall, we conclude that

domain aggregation for hosts is generally feasible but note that we must still support domains where

such aggregation is infeasible.
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1.1.3 Separating Routing from Host Identification

Realizing that host names have desirable properties but are unsuitable for routing, we explore

approaches to scale routing. While separating routing locators from host identifiers is a compelling

concept, we need to evaluate whether ASNs would make a good locator in practice. We begin

by modeling ASN growth to ascertain their feasibility for decades to come. We examine routing

tables to look at the impact of multi-homing and load balancing on the growth of ASNs. We

find that many ASNs today exist solely to participate in BGP when multi-homed. Our architecture

eliminates the need for such ASNs, curbing growth in ASNs and reducing the number of entries

routers must maintain and consult during packet forwarding. We further evolve the DNS in our

architecture in a way that load balancing does not cause any growth in routing tables. We then

use software implementations of forwarding algorithms to compare ASN-based forwarding and IPv4-

based forwarding. We find that ASN-based packet forwarding is an order of magnitude faster than

IPv4-based forwarding and requires less than 30% of the memory required for IPv4 forwarding.

Beyond examining the suitability of ASNs as locators, this component of the dissertation makes

two other contributions. First, we propose a unified architecture that identifies end-hosts with

host names and uses ASNs as routing locators. We examine the impact of the changes required to

translate from the current Internet architecture to the one we propose. We develop techniques and

strategies for partial deployment, in which the current and proposed architectures interact. We find

that packets under our architecture will get bigger because they will have to contain host names,

which are long, as against shorter IPv4 addresses. However, we conclude that the gains in routing

performance more than make up for the increase in packet size.

The second contribution of this component is the exploration of who should do the mapping

from host names to routing locators. We examine two approaches. In the first, hosts perform a

name to ASN lookup, much like how they today perform a host name to IP address lookup. The

DNS in this approach requires a change in that it must provide ASN records instead of IP addresses

when queried. However, this approach does not require any support from routers beyond being

able to route on ASNs instead of IPv4 prefixes. The second approach is for routers to perform the

translation through an independent database. This requires a new infrastructure component to aid

routing and may raise new security issues. We conclude that the approach where hosts perform the

mapping from names to ASNs has several compelling advantages: it is simple, the DNS has proven

to be a scalable approach, and the performance overheads can be predicted using DNS measurements.

1.1.4 Intra-domain Security

Lack of authentication is a significant security concern today: if we can correctly verify a host

or server is who it claims to be, we can prevent impersonation attacks. In current intra-domain

protocols, such as the DHCP, the protocol used to automatically configure hosts when they connect
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to the network, no authentication is provided, leaving hosts vulnerable to attacks. In one type of

attack, a machine can impersonate a DHCP server and provide other machines on the network with

false information, allowing the impersonator to intercept or forge data. In another attack, a single

machine can impersonate many different machines and overwhelm the resources at a legitimate

DHCP server, preventing other clients from getting configured correctly. A few works attempt to

address the security weaknesses in DHCP while other works focus on other intra-domain protocols.

None of these works provide a general way to address these intra-domain security concerns across

protocols. In our architecture, we provide a seamless mechanism to authenticate hosts. In particular,

our architecture identifies machines solely by their host names. Users can examine the host names

to confirm that they are communicating with the intended organization. We then tie these host

names to cryptographic credentials, called certificates, which can then be used to automatically

authenticate hosts and networks.

Specifically, we create a scheme that can secure intra-domain protocols in a unified way. To do

so, we create a scheme where a centralized server verifies the authenticity of hosts and issues crypto-

graphic certificates, allowing each host to prove its authenticity to others. To evaluate this approach,

we focused on two intra-domain protocols: DHCP and Address Resolution Protocol (ARP). We al-

tered the protocols to incorporate the certificates and cryptographic primatives required to allow

hosts to strongly authenticate themselves. We measured the overheads introduced in these protocols

using timing operations and used campus network profiles to determine whether this load would be

acceptable on the network infrastructure. Upon analyzing these protocols, we found that the in-

creased load would be greatest on network routers and switches. However, even for these devices,

we found that the overheads for each system are acceptable for both small and larger intra-domain

networks.

The rest of this dissertation is structured as follows. We review related work in Chapter 2. In

Chapter 3, we examine the scalability of IPv6, a proposed replacement for IPv4. In Chapter 4, we

examine the feasibility of using DNS host names as identifiers for hosts and as routing locators.

In Chapter 5, we examine how DNS zones relate to network topology. In Chapter 6, we examine

whether multiple domains can be aggregated to reduce router memory requirements. In Chapter 7,

we examine whether ASNs could be used as a routing locator in a split locator-identifier scheme. In

Chapter 8, we describe a unified architecture that integrates ASNs as routing locators and DNS host

names as host identifiers. In Chapter 9, we describe how confidentiality and authentication services

could be granted for hosts in such an architecture. In Chapter 10, we conclude with discussion.



2

Related Work

Our architecture is connected to an extensive set of related work. For readability, we divide the

related work into sections: new Internet architectures, Web and Domain Name System (DNS)

measurements, work to evolve the DNS, and work to secure intra-domain protocols. We now describe

each in greater detail.

2.1 New Internet Architectures

With the limitations present in IPv4, the networking community has explored a number of different

avenues for fundamentally changing the Internet architecture to address these shortcomings.

TRIAD [46] was the first architecture to explore the idea of name-based routing. Their goal was

to make Web content, specifically Uniform Resource Locators (URLs), accessible through router

participation. They use names and URLs for end-to-end identification and use IPv4 to tunnel

between their enhanced routers. While names are a component of TRIAD addressing, the usage of

a full URL allows them to better serve Web content. The DNS operation is altered in the TRIAD

scheme; resolution requests and Transmission Control Protocol (TCP) connection establishment are

combined into a single step. Each router directs the establishment packet by looking up the name

and directing the packet along the path to the described destination and including a source route

to the destination. The destination establishes TCP state and replies to the source, allowing the

source to reach the destination. Unlike our scheme, TRIAD does not focus on address exhaustion

or routing scalability issues.

IPNL [44] was designed to embrace Network Address Translation (NAT) to provide greater

address expansion in the Internet. NAT has historically been viewed as an obstacle in the Internet

because it breaks the notion of an end-to-end connection. Further, the stateful nature of NAT

makes it less scalable and can limit the ability of systems behind the NAT to act as servers. In the

9



2. Related Work 10

IPNL work, the authors wanted to ease deployment by avoiding changes to the Internet core and

thus leverage IPv4 in their design. IPNL uses fully qualified domain names as end-host identifiers.

End-hosts include these names in their connection establishment packets. IPNL routers perform

DNS queries on these host names to determine the address of the next IPNL router. Each IPNL

router records its address in the packet header. When the packet arrives at the destination, the

destination machine can reply by reversing the path of IPNL router addresses, which will loosely

route the packets back to the source. Subsequent packets omit host names and simply use the source

route path for transmission. Unlike IPNL, our architecture eliminates the need for the DNS and the

usage of the IP network layer. Further, by using Autonomous System Numbers (ASNs) in a layer,

we enhance scalability across the core of the Internet, a feature that IPNL does not provide.

IPv6 [32] makes a number of changes from IPv4. While its primary goal was to increase the

address space available to end-hosts, other changes were also introduced since the widespread changes

required for adoption allowed the community to address other issues as well. IPv6 has been the

subject of a number of Internet Engineering Task Force (IETF) Request for Comments (RFCs)

which specify the details of the protocol. A recent RFC [51] specifies the format of the IPv6

addresses and address allocation. Another RFC [56] provides advice from the Internet Architecture

Board (IAB) to the Internet registries on allocating globally aggregatable prefixes. When examining

IPv6, we focus on this allocation scheme as it is the most authoritative recommendation available.

While IPv6 is successful in expanding the address space available to end-hosts, it does not provide

a complete solution: it does not address routing scalability [77] or allow for the future evolution of

the Internet.

SNF [61] introduces an abstract framework in which the network layer is split into a forwarding

layer and a naming layer. The framework was designed to be as generic as possible to ensure

flexibility. The framework intentionally avoids details, so it simply provides guidance for future

works. Our approach extends this work by merging DNS and routing infrastructure for routing

directly using DNS names.

Several proposals aim to separate routing locators from end-host identifiers. We refer to such

proposals as locator-identifier split proposals throughout this paper. In these proposals, the router

close to customer edge looks up the locator for the destination address using a mapping database.

The router then uses the locators for source and destination hosts to populate an encapsulation

header, which is placed at the front of the original packet. Due to the mapping and encapsulation

involved, this is often referred to as a map-and-encap approach. The routing scalability of these

approaches stems from the fact that they allow routers in the core of the Internet to forward packets

only based on the locators, which are fewer in number, facilitating smaller forwarding tables. When

an encapsulated packet arrives at the destination edge network, the router removes the encapsulation

and sends the packet on to the host indicated in the original packet. The intra-domain routing

functions in a manner similar to today in each of these proposals. In NIMROD [25], encapsulation

is used to avoid complexity in the core of the Internet and to perform a locator-ID split. In the
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NIMROD architecture, routers use IPv6 addresses with 32 bit locator addresses, allowing multiple

locators to be specified in a single address. In ENCAPS [50] and CRIO [127], encapsulation is

used to reduce routing table sizes while operating on existing infrastructure. ENCAPS, which

was designed as a temporary measure, requires the first ENCAPS router to perform DNS lookups

on incoming packets in order to find a single address that represents the destination autonomous

domain. That router must then encapsulate the original packet in another IP packet with the address

that represents that domain. The CRIO work uses IP-in-IP, MPLS, or GRE encapsulation, but

establishes one-way tunnels between points of presence (POP). Since there are far fewer POPs, with

widespread CRIO deployment, routers in the default-free zone would only have to store one entry

for each POP, reducing routing table sizes. In LISP [40], the authors strive to decrease routing table

sizes but also try to incorporate support for mobility. To do so, they encapsulate packets for inter-

domain transport and de-capsulate packets when they reach the destination system. NERD [72], a

push-based database suite, augments LISP by providing both a format and mechanism for mapping

identifiers to locators. Like NERD, APT [60] defines a mapping service; however, APT is focused on

providing services for the eFIT approach [75]. In eFIT the authors suggest separating the address

space for end-hosts and routers to improve multi-homing and routing scalability. In our work, we

examine whether ASNs provide suitable routing locators which may influence the selection of locators

in these schemes and subsequent proposals.

The compact routing field has evaluated the long-term scalability of many routing approaches.

In the work by Krioukov et al. [71], the authors note that ASes are a natural choice for locators

and that there are an order of magnitude fewer ASes than the number of announced prefixes. The

transition to ASNs would immediately reduce forwarding tables by an order of magnitude, which

would relieve our current concerns about router forwarding table capacity. However, the authors

caution that this could be simply a one-time benefit and indicate that the rate of growth of ASes

exceeds that of IP prefixes. While raising this concern, the authors did not examine the causes of this

AS growth. However, upon considering the causes of growth, we find that under a split locator and

identifier scheme that uses ASNs several growth factors would be eliminated, slowing ASN growth.

Further, the Krioukov work also indicates the mapping from identifiers to locators requires a global

distributed mapping database, reducing scalability. However, a pull-based database, such as the

DNS, can perform these mappings in a scalable manner. Accordingly, we believe locator-ID schemes

still merit consideration.

HLP [115] is a routing protocol that improves inter-domain routing scalability. HLP improves

scalability in two ways. First, it hides minor routing changes from distant ASes which improves

fault isolation and reduces the scope of update messages. Next, HLP sends routing messages at

the Autonomous System (AS) granularity, allowing routers to update the reachability of multiple

co-located prefixes with a single message rather than requiring an update message for each prefix.

By reducing the number of update messages, HLP aids route convergence. In our architecture, we

can leverage HLP for better fault isolation and convergence properties.
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GIRO [86] seeks to improve the shortest path algorithms used by inter-domain routing. Currently,

the path length in terms of ASNs plays a pivotal role in route selection in Border Gateway Protocol

(BGP) routers. Unfortunately, the shortest AS path may not be the shortest physical path to a

destination. To combat this problem, the authors suggest redesigning routing, packet forwarding,

and the packet header to indicate the geographical location of the destination. In doing so, they

use the ASN as a component in their addressing scheme. The role of the ASN in their addressing is

simply as a provider identifier for aggregation. This scheme seeks only to influence route selection,

ignoring any issues related to end-host identification.

The work in AIP [5, 7] shows the security benefits of incorporating provider network information

in packets. The architecture endorses the usage of an “autonomous domain,” which is a region

smaller than an AS. While this work focuses on accountability, it is compatible with our own and

highlights the potential of the direction.

Other work in Internet architecture is relevant, but not as closely related. The work in [43]

compares schemes based on geographical location with schemes that use the Internet Service Provider

(ISP) hierarchy. The work concluded that the latter approach is a more scalable design. FARA [27]

and i3 [114] focus on mobility and utilize rendezvous mechanisms to facilitate communication between

mobile hosts. In HIP [81], the authors use public key cryptography to create secure identities for

end-hosts, an approach compatible with our own. The work in [2] extends the HIP scheme by

creating node identifier domains to make the scheme more scalable. In Layered Naming [17], the

authors use separate identifiers to distinguish between services and hosts, allowing for the delegation

of duties, which benefits traffic engineering. In NIRA [125], the authors discuss the feasibility of

allowing end-hosts to select which networks their packets use for transit, unlike traditional routing

in which routers select the paths. Finally, in ROFL [24], the authors demonstrate that flat address

spaces may be feasible for routing. In our architecture, the ASN layer’s fields have flat addresses.

However, unlike in ROFL, routers in our architecture can independently make forwarding decisions

for the packets.

Other works provide insights on the design of next generation architectures. In [6], the authors

propose using resilient overlay networks (RONs) to increase reliability for end-hosts. In this system,

end-hosts join small overlay networks which have diverse network vantage points, generally allowing

hosts to reach a destination assuming any physical connection exists to the destination. In [41], the

authors advocate using a Routing Control Platform in each autonomous system to make routing

decisions for each inter-domain router, simplifying configuration and reducing router inconsistencies.

In [98], the authors survey current architecture design options and implications, with a focus on

allowing future evolution of the Internet. In [4], the authors propose a routing architecture where

overlay networks perform their own routing for above layers. In [42], the authors advocate separation

of infrastructure providers from service providers by creating virtual networks and allowing multiple

architectures to run on the same infrastructure.
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2.2 Web and DNS Measurements

In proposing a new architecture, we must examine the current Internet use-cases and determine

whether our new design can accommodate them. To do so, we perform a series of Web and DNS

measurements.

A number of works have looked at the Web from the perspective of documents that comprise it.

In [3], the authors use connectivity measurements to learn about the topology of the Web. Work

in [85] examines how search engines should deal with the evolution of the Web. In [31], the authors

demonstrate that Web traffic exhibits a high degree of self-similarity, much like wide-area and local

area network traffic. In [21], the authors determine that while Web access does not exactly follow

a Zipf distribution, simple Zipf-like models are sufficiently accurate for Web proxies. In [19], the

authors examine methods for generating representative Web traffic. Work in [13] examines Web

traffic using six data sets and suggests performance enhancements for Web servers. In our work, we

examine the Web using the infrastructure hosting these sites rather than the content of the Web

itself.

Pang et al. perform an extensive analysis on the DNS infrastructure [88]. Their work focuses on

the availability of name servers, whereas ours examines the characteristics of the domains themselves.

Edelman examines the number of Web sites hosted on the same IP address [36]. The motivation

for this work was to determine the extent of collateral damage from IP-based filtering. However,

because the work was focused on the societal impact of the practice, it does not provide a rigorous

discussion of the technical details.

Other work focuses on the DNS infrastructure. Wanrooij et al. [121], characterized DNS miscon-

figurations from a sample of the .NL TLD. They did so by performing DNS ANY queries on 10,000

randomly zones mentioned in the .NL zone file. Their study had limited view of DNS provisioning

because the ANY query, as they used, provides only a small subset of the records in a zone. Our

analysis on DNS zones considers extensive information about orders of magnitude more domains

and provides details not exposed in this work.

Pappas et al. [89] examined the impact of three specific DNS configuration errors: lame delegation

(the name server(s) present at the zone differ from those present at the parent zone), diminished

server redundancy (less than adequate number of name servers are available or the available servers

are not topologically dispersed, implying that they may become unavailable under attack or outage

conditions), and cyclic dependency (name servers point to each other, forming a loop). Our work

focuses on domain availably, breadth, and size and uses a different methodology.

The Measurement Factory [118] recently performed zone transfers on a small fraction of the .com

and .net zones. They randomly sampled about 3.22% of .com and .net zones and attempted to

transfer them. Though they had data similar to us, they utilized it in ways that differ significantly

from us. While we focus on information contained in zone records, they focused on the versions
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of DNS software in use (to infer possibility of cache poisoning), lame delegation, diminished server

redundancy, and possibility of recursion (to infer potential misuse of such name servers by escaping

detection). Surprisingly, they find that over 30% of the name servers allow a zone transfer. We find

this percentage to be much lower – we were only able to transfer 6.6% of zones out of all the ones

we attempted.

2.3 Evolving the DNS

In this dissertation, we seek to involve the DNS. Several other works have attempted to evolve the

DNS to address scalability, latency, and security concerns.

In [66], the authors advocate creating a number of “replicated” DNS servers in the network.

These servers will contain a complete, current view of the entire DNS and will answer any questions

from regular DNS servers. By distributing these systems across the Internet, servers can avoiding

having to request the lookup from a far away network. The approach reduces lookup latencies for

popular domains by an order of magnitude and for unpopular domains by two orders of magnitude.

In our architecture, we do not attempt to push the entire DNS database to each network. Instead,

we evolve the DNS to perform mappings between host names and ASNs.

In [28], the authors seek to reduce the DNS latency costs associated with DNS cache misses. In

modern DNS, when a DNS resolver does not a have a current DNS record cached locally, it must

issue a query for the entry. Since the query typically traverses much of the path to the destination,

the query incurs a high latency. The authors modify DNS servers and resolvers to renew entries

in the DNS cache before they expire. By doing so, popular entries will stay cached, improving the

end-user’s browsing experience.

In [90], the authors use a content distribution network to propagate the information contained

in the DNS. In [97], the authors use a distributed hash table to distribute the DNS data. Both

approaches seek to spread the the records from the DNS across the Internet to improve reliability.

In our approach, we reduce the amount of DNS data that must be distributed, allowing caching to

more fully replicate the DNS information for popular destinations.

In [48], the authors suggest distributing DNS data using a peer-to-peer (p2p) network. Each DNS

update would be cryptographically signed to avoid the proliferation of junk data by malicious nodes.

By grouping the entries and performing incremental updates, the approach reduces the bandwidth

requirements while allowing lower latency updates. Our approach would be compatible with such a

design.

In [18], the authors argue that since DNS data changes fairly infrequently, cached DNS entries

which have expired are still likely to be valid. DNS resolvers can improve site reachability by

preserving cached entries in DNS resolvers, even after the TTL expires. This approach targets cases
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where the required DNS servers are temporarily unavailable. Our architecture may support this

approach since fewer records would be required and would be more stable, reducing the accumulation

of invalid entries.

In [11], the authors introduce DNS Security Extensions (DNSSEC), an approach for crypto-

graphically authenticating the records in the DNS. Resolvers following the DNSSEC protocol can

use a series of public key operations to verify the authenticity of the data received from DNS servers.

DNSSEC is compatible with our approach. Further, since fewer records are required, the overheads

for DNSSEC may be lower in our architecture.

In [47], the authors describe privacy short-comings in the DNS when it is used as a solution

for host mobility. They argue that many users sign up for dynamic DNS host names to facilitate

reaching their own machines. However, this approach also allows an attacker to watch the user’s

movements. An attacker can resolve the dynamic DNS host name to an IP address and then perform

a reverse DNS lookup on the IP to get the ISP provided host name associated with the IP address.

By feeding the ISP’s host name into WHOIS or other geographical location databases, the attacker

can learn the victim’s approximate physical location. To address this issue, the authors suggest a

broker to proxy connection requests to the mobile host. The mobile host can send proxied challenges

to the connecting system before revealing its IP address. When developing a mobility solution for

our architecture, we must be mindful of this issue.

2.4 Intra-domain Security

While no previous work provides a unified approach address all of the intra-domain security issues,

many of these concerns have been addressed individually in prior work. We discuss related work on

these issues, and work addressing other aspects of intra-domain security.

2.4.1 DHCP

Two RFCs address the issue of authentication in DHCP. RFC 3118 [34] defines an option for DHCP

which provides authentication and replay detection using shared secrets. This method does not

protect the portions of the communication which may be added by a DHCP relay; however, [112]

provides this protection. Another system, UA-DHCP [70], adds user authentication to DHCP. By

requiring the user to supply a username and password, this system provides access control to the

network, but still allows legitimate users access to the network from any machine without requiring

MAC address registration. It also prevents unauthorized users from gaining access by replicating

a legitimate MAC address. While these approaches provide access control and authentication to

DHCP, they do not provide a means for the machines in the domain to authenticate each other. In

our scheme, we provide each machine with a certificate to prove its authenticity. The method in
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RFC 3118 additionally requires the server to have established a shared secret with each client out of

band, which may be impractical if there is a large number of clients. In our scheme, organizations

can image their machines to pre-load them with the domain public key or simply distribute a patch

to the machines to load the key, simplifying administration.

In [15], authenticated DHCP is used as a way of providing authenticated network location aware-

ness information. The DHCP server is authenticated to the user by providing a chain of certificates,

leading from a certificate for the DHCP server up to a trusted root. Our system use a similar

mechanism to authenticate the DHCP server to the user.

2.4.2 Local Network Authentication

Our system requires machines to authenticate to the DHCP server before being allowed network

access. Others, mentioned in Section 2.4.1 similarly leverage DHCP for this purpose. There have

been several other systems proposed and implemented to solve the problem of authentication for

individual machines [20, 94, 9, 16]. The 802.1X standard [57] is supported out of the box by the

current versions of major operating systems, and provides mutual authentication using the Extensible

Authentication Protocol [1]. None of these approaches attempt to secure intra-domain protocols.

2.4.3 Remote Authentication

Several protocols exist for authenticating remote hosts. RADIUS [100] provides authentication, au-

thorization, and configuration information. EAP [1] provides a framework for authentication, allow-

ing the choice between multiple authentication methods, and may be used by RADIUS. CHAP [107],

and its extention MS-CHAP [129, 128], provide authentication by hashing challenges at random in-

tervals using a shared secret. The certificates provided by our system can also be used for remote

authentication.

2.4.4 ARP

One of the techniques to counter ARP insecurities is DHCP snooping [26]. The switches employing

this technique monitor DHCP traffic to create white-lists of MAC address and IP bindings, and

associate them with individual ports. Subsequently, if a packet arriving on a switch interface does

not match the binding, it is discarded. This approach eliminates the possibility of ARP cache

poisoning attacks and IP spoofing.

S-ARP [22] secures ARP by providing each host with a public/private key pair, and using this

to sign each ARP message. We use a similar method for securing ARP, however S-ARP requires

an Authoritative Key Distributor to provide keys for the verification process, while we provide
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certificates along with the ARP messages. S-ARP also requires hosts to be pre-configured with a

valid key pair, while our system allows the establishment of credentials upon joining.

The Secure Address Resolution Protocol [45] is another method of securing ARP which relies on

a central server and shared secrets. In this system, all ARP communication goes through a central

server. Hosts periodically communicate their IP and MAC addresses to this server, which answers

all ARP requests.

TARP [74] operates by having a Ticketing Agent issue signed tickets to each host with the host’s

IP/MAC mapping, which are sent along with ARP replies. Our system handles uses a similar

approach for ARP, but uses certificates signed by the DHCP server instead of tickets. The use of

certificates provides protection against impersonation.

SEND, defined in RFC 3971 [12], secures IPv6 neighbor discovery, the IPv6 equivalent of ARP.

This is done by adding timestamps, nonces, RSA signatures, and cryptographically generated ad-

dresses [14]. Additionally, new message types are added for discovery of certification paths.

2.4.5 SSH

SSH host keys are used by an SSH client to ensure that it is connecting to the correct server, and

not subject to a man-in-the-middle attack. The SSH specification [126] specifies two methods for

this. The client may have a local database of host names and keys, or the name-to-key association

may be certified by a trusted CA. In current practice, it is usual for known keys to be stored locally,

the CA method is not widely used. One solution to the problem uses the DNS using the SSHFP

record [103] to store SSH host key fingerprints. A DNS lookup may then be used to verify the keys

of new hosts. However, the DNS response may also be spoofed in this case. DNSSEC would be

required as well to prevent this, but is not widely deployed.



3

IPv6 Scalability

3.1 Introduction

Over 88% of the IPv4 address space had been allocated by spring 2009 [55]. The remaining address

space is projected to be exhausted by April 2011, at which point no more addresses will be available

for new hosts. The Internet Protocol version 6 (IPv6) was designed to solve the impending address

space crisis in IPv4. The 128-bit IPv6 [59] address space provides approximately 5× 1028 addresses

for each of the roughly 6.5 billion people on planet earth. With this much address space, IPv6 is

widely believed to be an answer to IPv4’s address exhaustion concerns. Both researchers and the

United States government [38] have encouraged the adoption of IPv6.

There are still open issues with technical aspects of IPv6 adoption. There are two primary

concerns: 1) the routing table size may be bigger for IPv6, simply because each entry requires four

times more space, and 2) the effect of factors that contribute to IPv4 routing table growth needs

to be examined in IPv6. We examine these growth factors, such as load balancing, multi-homing,

failure to aggregate aggregatable prefixes, and sub-optimal prefix allocations, and how they are

increasing the IPv4 routing table sizes to the point where modern router hardware may soon not be

able to store the table [77]. All of these factors, except for sub-optimal prefix allocations, are likely

to exist for IPv6 and could exacerbate the issue of routing scalability.

In this chapter, we examine the scalability of IPv6 packet forwarding. Routers have to perform a

look up on the destination IP address in each packet to find the appropriate information to route the

packet towards the destination. Router perform this lookup using a longest prefix match algorithm.

We implement the various longest prefix matching algorithms used by routers in software, and

compare the memory requirements and performance of IPv4 and IPv6. To perform this comparison,

we must load the data structures with entries. This is straight-forward for IPv4 since we have

routing tables available. Unfortunately, the situation is different for IPv6 since there are very few

IPv6 prefixes being announced in the Internet. According to the Route Views Project [120], which

18
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provides BGP routing tables from many vantage points in the Internet, the highest number of IPv6

prefix entries at any vantage point was only 807 in January 2007. Given that the number of entries

in July 2003 was 468, the increase in IPv6 deployment thus far has been far from stellar. In the lack

of a wide-spread deployment, we turn to the recommendations of the Internet Architecture Board

(IAB) to generate IPv6 prefixes. The latest IAB recommendation is that the registries allocate IPv6

unicast addresses in /48 prefixes in the general case1, with /64 prefixes being issued when it is known

that only one subnet is required [56]. This allocation scheme allows 216 subnets per prefix if the

final 64 bits are used for host identification. Under this scheme, it is unlikely that organizations

will resort to address fragmentation in order to be able to expand their networks. Guided by the

IAB’s recommendation, we generate IPv6 prefixes by randomly picking the prefix bits. The prefix

lengths are varied between 48 and 64 bits according to the Pareto distribution. This distribution

captures the expected behavior that majority of the organizations will use the shortest allocated

prefix possible.

To investigate scalability aspects of IPv6 packet forwarding, we consider 1) the time required to

create routing tables, 2) the time required to lookup prefixes during packet forwarding, 3) the time

required to update tables when entries get added or deleted, and 4) the memory requirements for

holding the routing tables. We conduct our analysis on a Pentium IV 3.2GHz processor machine

with 2GBytes of RAM and use three different cases. The first case projects the growth of prefixes

entirely due to new prefix allocations. In the second case, we investigate the co-existence of IPv4

and IPv6 prefixes. Finally, we study the impact of factors that are causing growth in the size of IPv4

routing tables. These include load balancing, multi-homing, and failures to aggregate aggregatable

prefixes.

From this study, we make the following conclusions:

• If modern routers simply replaced the IPv4 prefixes in their routing tables with an equivalent

number of IPv6 prefixes today, without changing the algorithms and data structures involved,

an average lookup in the routing table will be 67% more expensive and require at least 4.5

times more memory to store the same number of prefixes. This increased memory usage is

a significant concern given the limited capacities of Static Random Access Memory (SRAM)

used for forwarding tables in routers.

• We take existing techniques to compress the routing table data structure under sparse prefix

allocation in IPv4 and apply them to IPv6. These techniques can minimize the increased prefix

lookup and memory costs from longer IPv6 prefixes. We find that the compression techniques

can make IPv6 forwarding viable under the sparse allocations that are likely with its adoption.

1The regional registries initially made allocations in 35 bit prefixes (which were later expanded to 32 bit allocations).
However, subsequent allocations to the local registries require that end users be granted 48 bit prefixes in accordance
with the IAB recommendations [8]. Since these end users are the likely BGP participants, we model growth assuming
prefixes of 48 bits or longer.
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3.2 IPv4 Forwarding Table Growth Factors

The growth in the forwarding table at routers has proceeded at an alarming rate on the Internet

and has been analyzed by the community. Bu et al. examined the causes of BGP routing table

growth and found four key factors [23]. Two other works, by Meng et al. [76] and Narayan et al. [83]

confirmed these growth factors.

Failure to Aggregate: In inter-domain routing, some organizations simply fail to aggregate pre-

fixes that can be aggregated. This issue can easily be eliminated by careful router configuration on

the part of network operators.

Address Fragmentation: Address fragmentation is the result of IPv4 prefixes being insufficiently

large: when an organization exhausts the address space available under their first prefix, they must

request another for their remaining hosts. This second prefix is frequently disjoint from the first,

preventing aggregation. As a result, these two prefixes must be advertised separately and two entries

are stored in routing tables.

Load Balancing: Load balancing, a popular traffic engineering technique, also increases the number

of prefixes in routing tables. To distribute the traffic arriving at the organization, the originating AS

may simply divide a prefix into pieces and announce the pieces through different neighboring ASes.

Since the path for each sub-prefix is different, each sub-prefix must be stored as a unique routing

table entry, inflating growth.

Multi-homing: Organizations may purchase connectivity from multiple ISPs to provide redun-

dancy in case of link failures, a practice called multi-homing. Multi-homing inflates the routing

table size when provider-dependent address space is used. In this approach, a customer may multi-

home and use address space obtained from one of its providers. The customer announces a sub-

prefix obtained from one provider through each of its providers. Since this sub-prefix has different

routing properties from the provider’s prefix, it must be stored as a separate entry. When provider-

independent address space is used, the prefix must already be announced separately, so multi-homing

does not cause additional growth.

3.3 Longest Prefix Matching

Routing in the Internet is made possible by the BGP. BGP allows routers in each domain to

exchange reachability information about IPv4 prefixes owned by various organizations. The end

result of this exchange is a forwarding table at each BGP router which contains outgoing interfaces

corresponding to the prefixes. This table is referred to as the Forwarding Information Base (FIB)

for BGP routers. To forward packets toward their destination addresses, routers employ a longest
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prefix match on the prefixes contained in the FIB. This operation must be performed quickly to

accommodate gigabit routing speeds. Accordingly, a variety of algorithms exist for storing and

consulting the FIB [80, 108, 37, 109, 102]. Below, we outline some of the prominent ones.

The classical longest prefix match approach uses a trie data structure for storing the FIB. In

a traditional trie, each node can contain next-hop and output interface information. An address

lookup starts from the root node and, based on the input address, a link to a child representing a

“1” or a “0” bit is traversed. During each traversal, the algorithm stores the values of the next hop

and output interface information of the node, if it exists. Upon reaching a node without a required

child link, the search aborts and the last recorded hop and output interface information are used.

In Figure 3.1, we provide an example trie with four prefixes: prefix A (00*), prefix B (01*), prefix

C (001*), and prefix D (1111*).

While straight-forward, the above lookup approach requires a memory lookup for each bit in the

IPv4 address, yielding sub-optimal performance. To overcome this, work has explored the use of

multibit tries. In multibit tries, each traversal can consume multiple bits of input. The number of

bits consumed in each traversal is called the stride. Thus, instead of just having two children nodes,

a trie using a stride of 2 causes each node to contain links for 22 = 4 children. The choice of stride

length is important; a good stride choice can increase performance but a poor stride choice may

substantially increase the memory required to store the trie. Figure 3.2 shows the impact of using

a stride of 2 on the trie from Figure 3.1. From this figure, we can see that the number of memory

references to reach the leaves decreases. A clever implementation of multibit tries, Tree Bitmap [37],

reduces the number of memory references required during packet forwarding, as well as the memory

required to hold the FIB. Many router vendors today use this implementation [122].
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Figure 3.1: A traditional trie
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Figure 3.2: Multibit trie with stride length of
2

Another approach to optimize the traditional trie is to perform path compression. Such tries sim-

ply collapse one-way branches. This reduces the number of memory accesses required and limits the

memory required to store the trie. PATRICIA [80] first introduced path compression. Modification

were later made to the PATRICIA approach, allowing it to be used in longest prefix matching [108].

In Figure 3.3, we show the impact of path compression on the trie from Figure 3.1. The branch for

prefix D is compressed to a single node, yielding faster lookups for that branch and lower memory

consumption.
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Path compression can be performed on multibit tries as well, including the tries that use the

Tree Bitmap approach. In Figure 3.4, we show the impact of using both approaches on the trie from

Figure 3.1.
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Figure 3.3: Path compressed trie
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Figure 3.4: Path compressed and multibit hy-
brid trie

Some work has specifically focused on hardware implementations of longest prefix matching [117],

with some particularly addressing IPv6 [49]. While these works are both relevant and important,

they focus on hardware optimizations while our goal is to simply compare the performance of IPv4

and IPv6 with our proposed architecture using some representative algorithms.

3.4 Packet Forwarding Under IPv4

3.4.1 Methodology

We begin by implementing the trie algorithms described in Section 3.3 in software. We implement

three different types of tries: 1) a traditional trie, 2) a multibit trie with stride of 2, and 3) a trie using

the Tree Bitmap approach. We examine each trie type both with and without path compression,

making a total of six different types of tries. Each trie builds the forwarding table using the BGP

FIB we obtained from one router in the Route Views Project [120] on April 22, 2007. The FIB

contained 233, 500 unique prefixes.

For each trie, we examine 1) the time required to create routing tables, 2) the time required

to lookup prefix entries during packet forwarding, 3) the time required to update tables when

entries get added or deleted, and 4) the memory requirements for holding the routing tables. All

the performance trials were conducted on a machine with a Pentium IV 3.2 GHz processor with

2GBytes Random Access Memory (RAM). To measure the timings, we use the RDTSC instruction,

which can be used to measure the elapsed cycle count, yielding nanosecond timing resolution.

To measure the routing table creation times, we timed how long it took to load the prefixes

from a text file into the trie data structure in memory. To measure the lookup times, we randomly

selected 1% of the input prefixes and recorded the amount of time required to perform each lookup.

For updates, we selected 1% of the input records to be later removed and stored 1% of the input

records in a list, without adding them to the trie. We then timed how long it took to delete an
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entry and to insert a new entry. We calculated the memory requirements for each implementation

by multiplying the number of nodes required to encode the prefix entries by the size of each node.

3.4.2 Implementing Longest Prefix Match

Each trie must support three basic functionalities: insertion, search, and update of a prefix. Below,

we describe the routines for insertion, search, and update when a single bit from the prefix is

consumed at a time.

Traditional Trie: The insertion routine recursively consumes a bit of input at each node,

traversing and creating children nodes as needed. Once the input has been consumed, a terminal

node is created to store the outgoing interface information required to forward the packet. The

lookup routine proceeds identically, except that it checks for, and records, any outgoing interface

information at each node. Once the search routine runs out of matching nodes in the trie, it aborts

and returns the last encountered outgoing interface information. An update is simply a deletion and

insertion paired together. A deletion proceeds identically to a search, except that it removes the

outgoing interface information if and only if it has an exact match after traversing the trie.

Multibit Trie: We implement a multibit trie with a stride of two. When performing a lookup,

an insertion, or a deletion, the routine will use the greedy approach of using the longest stride length

possible with the given input prefix. Our implementation does not use prefix expansion, but instead

maintains pointers to shorter stride lengths. This allows for arbitrary prefix lengths and does not

require the additional memory needed for expansion. We use a static array of pointers at each node,

which results in faster lookups, but yields suboptimal memory consumption.

Tree Bitmap: We implement the Tree Bitmap approach described in [37]. The approach utilizes

a bit vector in each node to indicate the presence of children in the tree. Each child node is then

allocated contiguously in memory. The approach can access each child using a single pointer by

consulting the bit vector and utilizing pointer arithmetic to reach the destination child. By reusing

the same pointer, the Tree Bitmap approach can use longer multibit strides without increasing the

amount of memory required.

Path Compression: In a trie using path compression, each node can contain multiple bits that

it represents, in addition to the bits represented from its placement in the trie. Accordingly, the

search and deletion routines compare these additional bits with their input. If they all match, they

are removed from the input and the process continues as before. If they do not match, processing

aborts as if an exact match could not be found, since the input cannot exist in the trie. The insertion

routine is most affected by path compression. The insertion process stores the remainder of the input

prefix each time it must create a node. The insertion routine may also need to split a node if part

of the bit-string encoded within does not match the input prefix.
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3.4.3 Results

In Table 3.1, we show the average time required to create the IPv4 routing table, which had 233, 500

prefixes, for each of the six tries. (The path compressed versions for each trie are denoted by PC.)

From this, we see the path compressed multibit trie was the fastest to create. However, these

creation times are all under a second and would only be required when the router first starts. The

performance of each algorithm should suffice for most uses.

Creation Time (s)
Traditional 0.754
Traditional, PC 0.570
Multibit 0.530
Multibit, PC 0.390
Tree Bitmap 0.442
Tree Bitmap, PC 0.577

Table 3.1: Average IPv4 routing table creation times (in seconds)

To determine lookup performance, we searched a randomly sampled 1% of the unique domains

for both traditional and path compressed tries. Table 3.2 shows the results for the IPv4 lookups.

From this, we see that the uncompressed Tree Bitmap approach performs the best on average while

the compressed Tree Bitmap approach is competitive, requiring only an average of 35ns more time.

Lookup Time (ns)
Average Median Standard Deviation

Traditional 2,710 2,643 643
Traditional, PC 2,610 2,631 324
Multibit 1,798 1,779 339
Multibit, PC 1,714 1,731 336
Tree Bitmap 1,125 1,121 196
Tree Bitmap, PC 1,160 1,153 214

Table 3.2: IPv4 Lookup times (in nanoseconds)

Next, we observed the times required to update the tables. We randomly updated 1% of the

routing table entries. Table 3.3 shows the results for the IPv4 FIB. While substantially higher than

the lookups for each type of trie, the updates occur much less regularly than lookups. In particular,

the Tree Bitmap approach again had the lowest update costs. The compressed Tree Bitmap approach

was highly varying, with some entries requiring substantial time to perform an update. This is likely

a reflection of the difficulty in splitting nodes in a path compressed trie combined with the memory

reallocation required for Tree Bitmaps.

To determine the amount of memory required to store the IPv4 routing table, we multiplied the

number of entries by the size of each entry. The first two columns of Table 3.4 show the storage

requirements of the name-based routing table and the IPv4 FIB. Clearly, the path compressed tries
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Update Time (ns)
Average Median Standard Deviation

Traditional 6,091 5,971 929
Traditional, PC 5,596 5,650 697
Multibit 4,519 4,416 912
Multibit, PC 3,797 3,775 783
Tree Bitmap 3,632 3,633 665
Tree Bitmap, PC 4,184 3,923 3,361

Table 3.3: IPv4 Update times (in nanoseconds)

fare better than their uncompressed variants. In particular, the two Tree Bitmap tries performed

the best, which is consistent with their optimizations for better memory usage.

Memory Required (MBytes)
Traditional 19.364
Traditional, PC 13.537
Multibit 27.826
Multibit, PC 20.615
Tree Bitmap 8.031
Tree Bitmap, PC 5.080

Table 3.4: Comparison of storage requirements (in MBytes)

From these experiments, we find that IPv4 performance is best under the Tree Bitmap approach.

We find that the path compressed variant of the Tree Bitmap approach requires significantly less

memory. However, the performance advantages of the uncompressed approach outweigh the memory

savings in IPv4 and the uncompressed Tree Bitmap technique used in modern routers.

3.5 Packet Forwarding Under IPv6

To determine lookup, creation, update times, and memory requirements of IPv6, we repeat our

analysis from IPv4.

3.5.1 Methodology and Implementation

We model IPv6 prefixes using the IAB recommendations. While most organizations are likely to use

just one 48-bit prefix, others will want to subdivide their allocated range. Accordingly, we model

prefixes from 48 bit to 64 bit in length using a Pareto distribution. We randomly generate the bits

for each prefix. (The first three bits of all prefixes, “001,” are simply to indicate that the address is

a global unicast address.)
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We conduct our analysis for three different cases. The first case projects the growth of prefixes

entirely due to new prefix allocations. In the second case, we investigate the co-existence of IPv4

and IPv6 prefixes. Finally, we study the impact of factors that are causing growth in the size of IPv4

routing tables. These include load balancing, multi-homing, and failures to aggregate aggregatable

prefixes. For each of these cases, we vary the number of prefixes to store in the IPv6 table from 50, 000

entries up to 2 million entries. We select the lower-bound for the number of entries based on the

observation that as much as 75% of the IPv4 entries could be a result of address fragmentation [23].

Since IPv6 is unlikely to have such a degree of fragmentation, we use a lower-bound where such

entries are not present. We select an upper-bound that allows for significant growth in the number

of entries, giving us an idea of IPv6 performance in the near future.

In our implementation for IPv4, we used 32-bit integers, since they were sufficient to store the

prefixes. However, for IPv6, we switched to 64 bit integers, since they were needed to accommodate

the longer prefix lengths.

3.5.2 Results

Table 3.5 shows a comparison of IPv4 and IPv6 results. For an even comparison with the 233,500

IPv4 entries, we pick a routing table with 250, 000 entries for IPv6. Further, we present only the

results for lookup times and memory requirements since creation and update times, though higher

for IPv6, still fall within acceptable limits for modern routers.

We notice from Table 3.5 that the path compressed version of the Tree Bitmap approach offers

the fastest lookups and lowest memory requirements. The Tree Bitmap approach, which is used by

many modern routers [122] and had the best lookup performance for IPv4, is the second fastest in

lookup time. It consumes 67% more lookup time on an average than its IPv4 counterpart. The

path compressed versions of the other two tries, traditional and multibit, perform much better than

the vanilla Tree Bitmap approach in terms of memory requirements. Specifically, the Tree Bitmap

approach for IPv6 consumes 447.5% more memory than its IPv4 counterpart. These results indicate

that path compression can effectively leverage the sparse nature of the IPv6 tries to both reduce

memory requirements and the required time for lookups.

Case 1: Projecting IPv6 Prefix Growth

We now project the impact of growth in IPv6 forwarding table sizes due to new prefix allo-

cations. As before, we focus on lookup times and memory requirements. For simplicity, we omit

the traditional and multibit tries without path compression, since neither of these approaches are

competitive on any count.

Figures 3.5 and 3.6 depict the lookup performance and memory requirements of our trials respec-

tively. We note that the path compressed Tree Bitmap approach has the best lookup performance,
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Lookup Time Memory Required
(in ns) (in MBytes)

Value IPv4 IPv6 IPv4 IPv6
Traditional mean 2,710 5,221 19.364 88.238

median 2,643 5,296
std. dev 643 337

Traditional, PC mean 2,610 2,966 13.537 19.073
median 2,631 2,951
std. dev 324 1,641

Multibit mean 1,798 3,343 27.826 109.857
median 1,779 3,411
std. dev 339 285

Multibit, PC mean 1,714 2,038 20.843 26.746
median 1,731 2,063
std. dev 336 305

Tree Bitmap mean 1,125 1,878 8.031 43.974
median 1,121 1,905
std. dev 196 205

Tree Bitmap, PC mean 1,160 1,258 5.080 7.368
median 1,153 1,278
std. dev 214 228

Table 3.5: A comparison of IPv4 and IPv6 results (250,000 prefixes)

followed by the Tree Bitmap approach and then the multibit trie with path compression. For

memory requirements, the path compressed Tree Bitmap approach fares the best, followed by path

compressed traditional trie and multibit trie with path compression respectively. Of the various tries

depicted, the vanilla Tree Bitmap is the worst in its memory requirements. Overall, we conclude

that path compression yields significant benefits in both memory and lookup speeds as the number of

IPv6 grow.

Figure 3.5: IPv6 lookup times under varying FIB sizes

Case 2: Partial Deployment

Since a co-existence of IPv4 and IPv6 is likely to be the case in times to come, we now examine
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Figure 3.6: IPv6 memory requirements under varying FIB sizes

the lookup times and memory requirements for the case when IPv6 is deployed only in part of the

Internet.

Figures 3.7 and 3.8 show the lookup times and memory requirements, respectively, of a router

with FIBs for both IPv4 and IPv6. The results are shown for the case when the total number of

combined prefixes are 200, 000 in number. Once again, the path compressed Tree Bitmap approach

performs the best in terms of lookup times and memory usage. The vanilla Tree Bitmap trie fares

the second best in terms of performance, but the path compressed traditional trie is second best

in memory usage. Also, as expected, the lookup times and memory requirements are greater when

IPv6 accounts for 75% of the entries than when it accounts for only 25% of the entries. However,

the behavior in the middle of the graphs is interesting for each of the tries: the lookup times and

memory requirements level off as the proportions of the two protocols become equal and have a

local minimum at 60% IPv6 deployment. This is likely the result of IPv6 having better properties

at lower levels of deployment combined with the decreased role of IPv4.

Figure 3.7: Lookup times when IPv4 and IPv6 contribute various percentages of the FIB (200,000
prefixes)

Case 3: Impact of Deaggregation on IPv6
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Figure 3.8: Memory required when IPv4 and IPv6 contribute various percentages of the FIB (200,000
prefixes)

We now consider the impact of other factors that cause the number of prefix entries in the routing

tables to increase. In particular, we consider the three prominent factors, namely load balancing,

multi-homing2, and failure to aggregate aggregatable prefixes. For exposition purposes, we label

this collection as deaggregation contributors.

We first develop a set of simple algorithms to simulate these deaggregation contributors. To

model load balancing, we split an existing prefix in half and announce a new, more specific route

for both halves. For multi-homing, we take an existing prefix, randomly select a sub-prefix that fits

inside the original prefix, and add both prefix entries. This models the case where a subset of an

address range must be stored separately, since it can arrive through multiple routes. For failure to

aggregate, we take a given prefix and create an identical prefix with just the last bit toggled, which

models a case where two prefixes could easily be aggregated, but are not.

We take two randomly generated routing tables from the previous section, one with 100,000

prefixes and one with 200,000 prefixes, and apply the set of algorithms to model the deaggregation

contributors. We model the cases where each algorithm is applied to a random 10%, 20%, and

30% of the entries in the table. We use a random sampling because it models the fact that prefix

assignment (and thus the prefixes included in route announcements) is determined independently

from the decision to employ traffic engineering (or failures to properly aggregate prefixes).

In Figure 3.9, we show the impact of adding entries due to the deaggregation contributors to the

lookup times on our 200, 000 entry table. (The results from the 100, 000 entry table were similar

and have been omitted for conciseness.) For each trie type, we observe increases in the lookup times

as the percentage of deaggregation increases. However, the lookup times for the vanilla Tree Bitmap

approach appears to be less affected by the increased deaggregation. Also, in each case, the tries

perform as well as before relative to each other. The memory requirements follow the same trend as

lookup times. We omit those results for brevity.

2While Shim6 [84] can be used to avoid routing table growth due to multi-homing in IPv6, it is difficult to predict
Shim6’s adoption. Accordingly, we choose to model multi-homing growth.
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To be concise, we do not show how these results compare with the case when randomly picked

prefixes were added to the table, rather than picking entries specific to deaggregation contributors.

For most tries, tries with randomly picked entries fared better.

Figure 3.9: Impact of deaggregation on lookup times of IPv6 tables (200,000 prefixes)

3.6 Conclusion

It is generally accepted that routers will take longer to forward IPv6 packets, and that the routing

tables under IPv6 will get bigger. However, the extent of this degradation had not been explored.

In this chapter, we quantify the performance the routers must sacrifice under IPv6. Our results

also show that using path compression techniques can reduce this performance overhead by making

the lookups less dependant on the prefix length. We note that the Tree Bitmap approach used by

many modern routers [122], which yields the best performance and memory usage in IPv4 does not

fair so well with memory usage in IPv6. However, when we modified the algorithm to use path

compression, both its memory usage and lookup performance improved. This combined approach

has the potential to make the performance of IPv6 competitive with IPv4.

While we tried our best to project IPv6 deployment using the latest recommendations, actual

prefix allocations may be different. There is also a possibility that the number of entries in IPv6

routing table may be far fewer than what today’s IPv4 routing tables contain. This could happen

if some or all of the factors that inflate routing table entries today cease to exist. Short of knowing

what might happen, we used similar number of IPv4 and IPv6 entries for comparison purposes.

However, one cannot rule out the possibility that the performance overheads of longer IPv6 prefixes

may be offset by fewer entries.

This exploration of IPv6 has shown that IPv6 deployment can be accomplished in modern routers

with modest changes in the forwarding table data structures. Unfortunately, IPv6 deployment comes

at a premium: the memory requirements and lookup times are more demanding than IPv4. This

leaves room for improvement in other future Internet architectures.



4

Routing on Host Names

4.1 Introduction

Users of popular Internet applications specify service end points using human-friendly domain names.

The DNS resolves these domain names into IP addresses and the underlying communication subsys-

tem uses only the IP addresses to deliver data. This setup has worked well so far. However, today,

the unallocated IPv4 address space is scant. Although DNS scales due to its hierarchical nature of

local caching, the DNS infrastructure is vulnerable to many types of financial and security attacks,

including Denial-of-Service (DoS) and phishing.

This chapter takes a fresh approach to solving address exhaustion with the above concerns in

mind. We begin by questioning if it is important to have both IP addresses and host names to

identify end hosts. In fact, we conduct an exercise where we simply replace the IP-based addressing

and routing in the Internet with one where hosts are identified only by their names and the routing

subsystem forwards packets based on names. (Subsequently, we refer to the latter scheme as name-

based routing.) Using the widely-accepted domain names as host identifiers has the advantage that

the end users do not have to be concerned with aspects of Internet evolution. This is important to

make the transition to the new scheme practical. If adopted, name-based routing would have the

following impact:

Large Address Space: The domain names are extremely expandable in practice, allowing

37255 possible names. This figure stems from the fact that host names can be 255 characters long,

with 37 possible characters (case-insensitive letters, numbers, and hyphens). Compared to IPv6,

which allows 5.23×1028 IP addresses for each of the roughly 6.5 billion people on Earth, host names

allow 1.20 × 10390 addresses per person. This is roughly 362 orders of magnitude more addresses.

Thus, address space exhaustion concerns will be alleviated.

Reduced DNS Infrastructure: A translation from domain names to IP addresses would no

31
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longer be required, eliminating the need to have the DNS infrastructure1. Thus, all the DNS-related

security attacks will be eliminated.

Easier Network Provider Transitions: Currently, IP addresses serve both as identifiers as

well as locators, making it hard for organizations who lease network prefixes from their providers to

change providers. Since domain names are provider independent, this restriction will be eliminated

under name-based routing.

Many challenges need to be addressed before name-based routing can become a reality. First,

the IP header will have to be redesigned such that packets can contain domain names instead of

IP addresses. Second, the routing protocols will also have to be redesigned to exchange domain

names instead of IP prefixes. Third, scalability aspects of name-based routing tables and forwarding

speeds will have to be considered. Fourth, support for multi-homing, mobility, and advanced services,

such as multicasting and anycasting, will have to be provisioned. Finally, since a transition to the

new scheme cannot occur overnight, issues in backward compatability would have to be carefully

examined.

In this chapter, we take a first step at investigating the feasibility of name-based routing. Our

focus is primarily on comparing the performance of name-based packet forwarding with modern

IPv4 packet forwarding. Specifically, we evaluate the feasibility of name-based routing in terms of

the time required to create, look up, and update routing tables in the core of the Internet, and the

corresponding storage requirements.

Toward our goal, we use data from the DMOZ Open Directory Project [33], which contains user

submitted links, and the Route Views Project [120], which provides IP prefix information available

to the research community. Just like in Chapter 3, we implement various longest prefix algorithms

used by IPv4 routers in software. The analysis produced mixed results:

• The name-based routing results are slower than IPv4 in terms of lookup, creation, and update

times for each of the data structure we examined. In particular, compared to IPv4, the lookup

times are over 2.5 times slower for name-based routing while update times are about 2.7 times

slower.

• The biggest obstacle for name-based routing is the size of the routing table, which requires 1

to 2 orders of magnitude more storage than the corresponding IPv4 tables.

• To address the storage requirements, we explore the viability of caching the most popular

domains to reduce the number of entries in the routing table and explore a domain aggregation

approach to further reduce the number of entries. These techniques yield positive results, but

do not make the approach as compelling as we would like.

1Routing would still have to be secured. This issue would remained unchanged from today.
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4.2 Name-based Routing

To route on names instead of IPv4 addresses, inter-domain routers would have to maintain an

equivalent of a BGP FIB that would contain domain names instead of IP prefixes. We refer to this

table as the name-based routing table subsequently and routers employing this table as name-based

routers. For common cases, it is sufficient that this table for core Internet routers contain an entry for

1) each DNS second-level domain, e.g., university.edu and 2) each third-level domain for domain

names that contain countries as the Top Level Domains (TLDs), e.g., university.ac.in, along

with their corresponding outgoing interfaces. For simplicity of subsequent description, we refer to

all entries of the name-based routing table as domain names. Notice that finer granularity domains

names, e.g., cs.university.edu, do not need to be in name-based routing tables for core Internet

routers since they can be taken care of by the intra-domain routing. To forward packets toward

their destination, name-based routers will use the domain name of the destination and perform an

equivalent of today’s longest prefix match on the name-based routing table.

We compare the performance of IPv4 routers with name-based routers for traditional and path

compressed tries as described in Section 3.3. We leave out multi-bit tries, including the Tree Bitmap

approach, from our comparison because an even-handed comparison is hard to do when the optimal

stride sizes differ, which is likely to be the case because IPv4 prefixes and domain names have

fundamentally different characteristics.

4.2.1 Test Data

In order to model realistic name-based routing tables, we collected data from the DMOZ Open

Directory Project [33]. The project contains user submitted links and is the largest and most

comprehensive directory of the Web. Our input data, collected on October 28, 2006, has 9, 633, 835

unique URLs and 2, 711, 181 unique second and third-level domain names, as described earlier. We

compare this data with the July, 2006 results from the Internet Systems Consortium (ISC) Internet

Domain Survey [29]. The ISC data indicates there are 3, 105, 760 second-level domains. Thus, our

data includes approximately 73.38% of the second-level domains. This gives us confidence that we are

working with a representative sample of the Internet’s domains. For comparison with IPv4 routing

tables, we obtained a BGP FIB from one router in the Route Views Project [120] on November 15,

2006. The FIB contained 155, 854 entries, fewer than expected, possibly because the chosen vantage

point does not have all the announced IPv4 prefixes. As a result, the performance of IPv4 that we

measure is actually slightly better than it would be with complete records.



4. Routing on Host Names 34

4.2.2 Implementation of Longest Prefix Match Algorithms

We begin by parsing the links contained in the DMOZ data into DNS host names. We then aggre-

gate these host names into domain entries, which are used to populate both traditional and path

compressed tries. To do so, we use a simple heuristic, in which generic TLDs are grouped by their

second-level domains and most country code TLDs are grouped by their third level TLDs. Some

country codes have second level domains, in which case an individual host name is considered to be

a domain, introducing a small overestimate in the number of domains if there are multiple hosts in

the same domain in our data.

In each of the trie implementations, we hierarchically reverse the DNS names when storing

entries and when performing lookups. For example, www.university.edu is translated to edu.

university.www. This allows us to take advantage of the hierarchical structure of names to obtain

better branching.

The BGP FIB from Route Views is also parsed into AS-specific prefixes, which are then used as

input to the corresponding traditional and path compressed tries. Next, we describe the implemen-

tation of various tries.

Traditional Trie

The trie should support three basic functionalities: insertion, search, and update. In the case of a

name-based routing table, the unit of insertion, search, and update is a domain name while for a

IPv4 FIB, the unit is a prefix. The names are made up of 37 characters, 0-9, A-Z, and a ’-’ (the ’.’

is treated as a special value) while the prefixes can only be made of bits ’0’ and ’1’. The subsequent

discussion describes the routines for insertion, search, and update in a name-based routing table

where a character is consumed at a time. The traditional trie for IPv4 is populated similarly except

that a bit is consumed at a time and bit comparisons are used instead of character comparisons.

When storing an entry, the insertion routine recursively adds one character at a time from left

to right, starting at the root. At each hop, the routine finds the child node that matches the

first character in the input domain name. The insertion routine then removes the first character

of the input and recursively calls itself using the child node as the new insertion point. Upon

encountering a null child, the insertion routing creates a new node for the child, inserts it into its

parent node, removes the first character of input, and recursively calls itself. Once all the input has

been consumed, the next hop and output interface are stored at a terminal node off the last child.

The search routine also proceeds recursively, consuming a character of input at each hop. In

the name-based approach, the search routine checks for the existence of the next-hop and output

interface information at each “.” entry and records it if it exists. In the IPv4 approach, the search

routine checks for next-hop and output interface information at every hop. Upon encountering a

null child, the search process aborts and returns the next-hop and output interface it last recorded.



4. Routing on Host Names 35

An update is simply a deletion and insertion paired together. The deletion routine proceeds

similarly to the search routine. Upon encountering a null child, the deletion process aborts without

changing the structure, since no exact match is found in the structure. When the deletion has

consumed all of the input data, the deletion routine removes the next hop and output interface

information from the current node. The routine then completes.

When looking at a traditional trie analytically, we note that the worst case lookup time is O(L),

where L is the length of the input. This is because the trie traversal is based on this length,

consuming one character at each node. Similarly, the worst case for an update is O(L). The memory

requirements are O(L*N), where N is the number of entries than must be stored.

Path Compressed Trie

In a path compressed trie, each node can contain multiple characters or bits that it represents, in

addition to the characters/bits represented from its placement in the trie. Accordingly, the search

and deletion routines compare these additional characters/bits with their input. If they all match,

they are removed from the input and the process continues as before. If they do not match, processing

aborts as if a null child was encountered, since the input cannot exist in the trie.

The insertion routine is most affected by path compression. Upon encountering a null child when

inserting, the insertion creates a new node, stores the remainder of the input in it, and stores the

next hop and interface information. Additionally, if the insertion encounters a node, node A, which

is storing multiple characters, it attempts to match its entry with the stored characters/bits. Upon

finding characters/bits that do not match, the stored character/bit string is split. The matching

characters/bits are retained in node A. Two new nodes are then created: one for the remaining part

of the split string, node B, and one for the rest of the input in the entry being inserted, node C. All

of the children on node A are then moved to node B. Nodes B and C are then added as children on

node A. This process of building the trie takes advantage of compression whenever possible while

avoiding any special compression heuristics.

When looking at a path compressed trie analytically, we again note that the worst case lookup

and update times are O(L), where L is the length of the input. However, the memory requirements

are O(N), where N is the number of entries that must be stored. Note that the storage requirements

are independent of the input length, since the entire input can be compressed into a single node.

4.2.3 Comparison with IPv4

To compare the performance of name-based routing with IPv4 for both traditional and path com-

pressed tries, we examined for each approach: 1) the time required to create routing tables, 2) the

time required to lookup entries during packet forwarding, 3) the time required to update tables when
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entries get added or deleted, and 4) the storage requirements for routing tables. All the performance

trials were conducted on a machine with a Pentium IV 3.2 GHz processor with 2GBytes RAM. To

measure the timings, we use the RDTSC instruction, which can be used to measure the elapsed cycle

count, yielding nanosecond timing resolution.

Routing Table Creation Times

In Table 4.1, we show the average time required to create the name-based routing table which

had 2, 711, 181 entries and the IPv4 FIB, which had 155, 853 entries. We make comparisons both

for traditional and path compressed tries. Though the name-based routing tables take orders of

magnitude more time to load, these times are unlikely to impact forwarding speeds since the tables

typically need to be loaded only every few minutes.

Traditional Trie Path Compressed Trie
Name-based 24.383 19.231
IPv4 0.612 0.384

Table 4.1: Average routing table creation times (in seconds)

The ISC Internet Domain Survey indicates that there has been a growth of roughly 50, 000

second-level domains every six months over the last 3 years. If this trend continues, there will be

roughly 4.25 million second-level domains in January 2018. This time-frame seems sufficiently large

to determine the scalability of our approach. We conclude that routing table creation times are a

non-issue for name-based routing.

Lookup Times

To determine lookup performance, we searched a randomly sampled 1% of the unique domains for

both traditional and path compressed tries. Table 4.2 shows the results for the name-based routing

table and the IPv4 FIB. Though lookups in the name-based tables cost more than IPv4 lookups for

both types of tries, they are of the same order.

Traditional Trie Path Compressed Trie
Avg Min Max Avg Min Max

Name-based 6,842 2,070 54,140 6,460 2,290 51,238
IPv4 2,618 1,070 10,455 2,525 910 5,283

Table 4.2: Lookup times (in nanoseconds)

Next, we looked at the distribution of lookup times obtained above. The Cumulative Distribution

Functions (CDFs) of the lookup times are shown in Figure 4.1. These CDFs indicate that the average

lookup times for name-based routing are worse than those for IPv4 because a larger percentage of

lookups for IPv4 finish in a small amount of time. In particular, 50% of the name-based lookups take
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4, 531 nanoseconds or less and about 90% of the lookups take 7, 656 nanoseconds or less. For IPv4,

the corresponding percentage of lookups take 2, 656 nanoseconds or less and 2, 969 nanoseconds or

less respectively. We conclude that name-based routing can benefit from optimizing lookup times for

popular entries.

Figure 4.1: CDFs for distribution of lookup times for name-based and IPv4 approaches

Projecting the average lookup times to 4.25 million second-level domains projected by the ISC

Internet domain survey in January 2018, we get 7, 629 nanoseconds for traditional trie and 7, 644

nanoseconds for the path compressed trie. These numbers seem to indicate that the lookup times

do not increase in proportion to the number of entries in the name-based table. This is most likely

because these tries would remain sparse, yielding good performance with path compression.

Updating the Routing Table

Next, we observed the times required to update the routing tables. We randomly updated 1% of

the routing table entries. Table 4.3 shows the results for the name-based routing table and the IPv4

FIB. Though updates in the name-based tables cost more than IPv4 lookups for both types of tries,

they are still reasonable, since updates occur much less regularly than lookups.

Traditional Trie Path Compressed Trie
Avg Min Max Avg Min Max

Name-based 16,013 5,790 41,508 14,603 7,425 36,520
IPv4 5,949 3,365 19,810 5,358 3,808 14,855

Table 4.3: Update times (in nanoseconds)

When projecting the average update times to 4.25 million second-level domains, we get 16, 749

nanoseconds for traditional trie and 16, 529 nanoseconds for the path compressed trie. These numbers
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again seem to indicate that the update times do not increase in proportion to the number of entries

in the name-based table.

Memory Requirements

To determine the amount of memory required to store the name-based routing table, we multiplied

the number of entries by the size of each entry. The first two columns of Table 4.4 show the storage

requirements of the name-based routing table and the IPv4 FIB. Clearly, the path compressed tries

fare much better for both name-based and IPv4 tables and the memory requirements of the name-

based routing table are very demanding. We conclude that name-based routing would require 2 to 3

orders of magnitude more memory than IPv4.

IPv4 Name-based Top 16% of Top 4% of
(full trie) name-based name-based

entries entries
Traditional Trie 13.0 400.8 83.2 19.5
Path Compressed Trie 8.9 163.7 29.1 7.2

Table 4.4: Comparison of storage requirements (in MBytes)

When projecting the storage requirements to 4.25 million second-level domains, we get 642.18

MBytes for traditional trie and 264.11 MBytes for the path compressed trie.

4.3 Optimizing Memory Requirements for Name-based Rout-

ing Tables

The greatest difficulty for the name-based approach seems to be the storage requirements, which

are two orders of magnitude greater than IPv4 for both traditional and path compressed tries. As

a result, the memory required to store the entire name-based trie may be too much to fit into the

faster SRAM on routers. Previous work indicates that a significant portion of traffic is destined to a

small subset of destinations [39, 99, 116]. Guided by this observation, we now explore the trade-offs

of storing high-usage domains in fast memory and using the slower memory, such as DRAM, for

cache misses.

We estimate domain popularity using the number of times a domain appears in the unique URLs

contained in the DMOZ data. For each link, we determine the domain associated with it. We

then add the number of times each domain appears in the list and take this as an indication of

domain popularity. As shown in Figure 4.2, the DMOZ data revealed a heavy tail distribution. In

particular, the top 4% most popular domains account for 35.75% of URLs and the top 16% most

popular domains account for 50.06% of URLs.
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Figure 4.2: Cumulative distribution function for domain popularity

To evaluate the performance of caching tries corresponding to popular domains, we modify our

code to include a smaller, cached trie as well. Entries are either inserted into the cached trie or the

regular trie, depending on its popularity. Lookups and updates are first conducted on the cached

trie and proceed to the regular trie only if no match is found in the cached trie.

We perform these tests for both path-compressed and traditional tries. We experimented with

two cases: when the smaller trie contains 16% of the most popular unique domains and when it

contains 4% of the most popular unique domains. Table 4.4 shows the storage requirements for the

caches. The cached tries containing 4% entries come very close to the corresponding traditional

IPv4 tries. For the path compressed trie, the cached trie with 4% entries is well within the bounds

of the SRAM in modern routers.

As shown in Figure 4.3, caching 4% of the entries reduces the lookup times for more than 60% of

the lookups. Caching 16% of the entries does not yield as great results, indicating costs of traversing

a larger cache trie offset the higher cache hit percentage. These caching benefits come at the cost

of increased lookup times for the less popular domains, since they must look through two tries. We

note this analysis is all performed in software and DRAM, which does not show the advantage of

caching in higher speed memory. We conclude that caching can yield performance advantages for

popular entries for the majority of lookups.

4.4 Other Issues in Adopting Name-Based Routing

There are several other open issues with switching to name-based routing. A redesign of the routing

protocols and IP header is required to enable a transition to the proposed name-based scheme. This

could be accomplished by adding a name-layer on top of the IPv4 header. The issue of encoding

domain names in the network layer would also require careful consideration. Clearly, host names

are longer than IPv4 addresses and encoding them in each packet’s header will cause the packet
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Figure 4.3: Comparison of CDFs for lookups in name-based path-compressed tries with and without
caching

header size to increase. However, the extra overhead may not be worse than IPv6. This can be seen

in Figure 4.4, where we plot a CDF of the character length of the full host names from our DMOZ

data set. We note that 99.59% of host names are 36 characters or shorter. Further, 67.62% are 21

characters are shorter. Since each domain name character can be encoded in 6 bits, a 21 character

name would require only 15.75 bytes whereas an IPv6 address would require 16 bytes. If an efficient

variable-length encoding were used, it is possible that the name-based headers would actually be

shorter than IPv6 for the majority of traffic.

Figure 4.4: CDF of the percentage of hosts with given number of characters

Partial deployment scenarios necessitate using legacy infrastructure between deploying sites.

Deploying routers can use IPv4 tunneling to traverse legacy routing infrastructure. However, the

last deploying router on the path cannot use tunneling, so both edge networks must be compliant

for the approach to succeed.
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4.5 Conclusion

In this chapter, we sought to determine the feasibility of routing on names. We find that name-based

routing under-performs IPv4 routing. The difference is most evident in forwarding performance, in

which name-based routing requires over 2.5 as long as IPv4 to forward packets, and is most acute

in memory requirements, where name-based routing costs two orders of magnitude more memory.

The analysis in this chapter assumes that all hosts in a domain can be represented as one entry

in the routing tables. This implies that the hosts in a domain are near each other in the network

topology and have similar routing characteristics. Without aggregation, we would need a separate

routing entry for each of the hosts in the domain, which would further increase the router memory

requirements and reduce forwarding performance. In Chapter 5, we investigate this issue and find

that this assumption is often valid, but cases where separate entries are needed may cause growth

and worsen the performance of name-based routing.

Being able to aggregate all hosts belonging to the domain into a single routing table entry is not

sufficient to scale name-based routing since there are estimated to be 153 millions domains, each of

which would require its own entry. In comparison, we have only around 300 thousand routing table

entries today. Even though our study shows that caching the most commonly visited domain names

will be effective at the edge routers, more is needed to scale name-based routing. In Chapter 6,

we examine an approach that investigates where domains that may be topologically close can be

aggregated under a single identifier. Depending on the co-location of domains, this could reduce the

number of routing table entries in our scheme significantly.



5

Examining Topological Proximity of Hosts

Within a Domain

5.1 Introduction

One of the most significant design aspects of the IPv4 and IPv6 addressing schemes is the ability

to aggregate IP addresses into prefixes. Machines that are close in network topology often share a

prefix. Prefixes help scale routing to billions of machines by compacting the size of the routing tables;

smaller routing tables lend themselves to faster lookups and fewer routing messages to maintain those

tables.

The DNS hierarchy was not designed with similar goals. While hosts associated in a domain

typically co-locate topologically, it is not required. In Chapter 4, we assumed that hosts within a

domain could be represented in host name-based routing tables by a single entry for their domain.

This would allow routers under name-based routing to store entries at the domain granularity, which

is necessary for faster lookups and for reducing storage requirements. Given the importance of host

aggregation in our work, it is important to ascertain that hosts belonging to a domain can indeed

be represented through a single entry for their domain.

In this Chapter, we examine domains in the Internet to determine whether hosts from a domain

are near each other in the underlying network topology. A typical unit of administration in DNS

is a second-level domain name, such as example.com. A zone file corresponding to the zone stores

information about the hosts, services, and sub-domains contained in that zone. While typical DNS

queries inquire about a single host or service, some use-cases require complete information contained

in a DNS zone. An instance of this occurs when DNS servers for a domain need to synchronize to

obtain a consistent view of the zone. The DNS provides a special query for that, called the zone

transfer query. In this chapter, we perform DNS zone transfer query to capture detailed information

about DNS zones in the Internet. During a three month period, we swept 74 million zones, roughly
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60% of the Internet, using zone transfers. Since zone transfers may be considered a security risk, zone

transfers may only provide us with information biased towards domains with lax security practices.

To avoid this bias, we additionally walked the zones of the second-level domains known to deploy

DNSSEC [10] to obtain additional zone data. Given the security role of DNSSEC, these domains

may be biased towards security conscious zones. While slow, this process allows us to obtain the

same information as a zone transfer. This data allows us to characterize the diversity of zones in the

Internet in terms of number of hosts, the domains, ASes and BGP prefixes to which they belong.

From these measurements, we find:

• DNS domains (or zones) vary vastly in size, with the largest zone containing over two million

hosts while a significant fraction contain just a handful.

• About 59.10% of zones were confined to a single AS, with each host name in the zone having

an IP address belonging to that AS. Another 38.03% of zones spanned only two ASes. An

additional 2.32% of zones span three domains while 0.35% of zones span four or more ASes.

5.2 DNS Zone Breadth and Depth

5.3 Background

The behavior of the DNS is specified in a series of IETF RFC documents, dating back to the 1980s.

While there are many DNS-related RFCs, the key RFCs describing the basics are RFC 1034 and

1035 [78, 79].

The DNS is organized as a tree, with branches at each level separated by a “.”. The entire DNS

space is divided into various zones. Each zone consists of a connected portion of this tree under

the same administrative control. A typical unit of administration in DNS is a second-level domain

name, such as example.com. A zone file corresponding to this second-level domain name stores

information about the hosts, services, and sub-domains contained in that zone.

The data within each zone is stored in the form of resource records which consists of four basic

parts: a name, a class, a type, and data. All DNS records relating to the Internet are in IN class.

59 different types of records exist for storing various types of data. A zone is defined by two types

of records. The first, SOA (Start of Authority), indicates the start of a DNS zone. Each zone should

have a SOA record. The contents of the SOA record are the email of an administrator, the domain

name of the primary name server, and various timers. The second, one or more NS (Name Server)

records, also should exist in each zone. These records indicate the set of name servers for the zone

and can also indicate the delegation of sub-zones.
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Every DNS zone must have at least one name server which serves the DNS records within that

zone. Normally, there is more than one name server for a zone, with one being designated as the

primary name server and any others being designated as secondary name servers. A zone transfer,

initiated by an AXFR query is typically used to transfer the zone data from the primary name server

for a zone to the secondary name servers. The primary name server typically loads its data from a

flat file known as a zone file.

5.4 Data Collection Methodology and Issues

We use two data sets in this paper. The first, zone transfer, was obtained by attempting to transfer

the zones listed under .com and .net. There were 65,101,733 second-level domains under .com and

9,224,482 under .net. Combined, these 74,326,215 domains represented about 58% of the 128 million

zones registered at the time [123]. For each zone, we had the list of name servers. We looked up the

IP addresses corresponding to each of these name servers in order to be able to contact them. We

used our own custom software, written using the Net::DNS Perl library [69], to zone transfer each of

these DNS zones in random order. This process took three months, in part because zone transfers

are connection-oriented, unlike regular DNS queries, which are connectionless. We attempted a

zone transfer from each name server for a zone until we either successfully transferred the zone, or

the zone transfer failed for all its name servers. Additionally, if two zone transfers from the same

IP address failed, or upon request from the DNS server’s administrator, we discontinued making

further attempts to transfer any zone from that IP address. Upon connection establishment failure,

we retried once. In order to expedite the process, we used five machines, each with one hundred

processes issuing zone transfer requests. We succeeded in transferring zones for 4,947,993 (6.6%),

indicating that many DNS servers willingly distribute their information to outsiders. While our data

set was confined to the .com and .net top level domains (TLDs), it still contained geographically

distributed sites.

Our second data set, dnssec, is composed of sites that deploy DNSSEC [10] and may be consid-

ered to be more security conscious. DNSSEC, which is a set of extensions to the DNS, adds security

to the DNS, including origin authentication and integrity to DNS data, and authenticated denial of

existence. We obtained the dnssec data set through walking DNSSEC records. This process is slow

but allows retrieval of all the records in a zone, much like a zone transfer. This data set is limited

by the low deployment of DNSSEC. To build this data set, we began with a list of 862 zones with

DNSSEC in production usage from the SecSpider DNSSEC Monitoring Project [87]. We limited

this to the second level zones within the .com and .net TLDs to allow a fair comparison with the

zones we transferred data from in the same TLDs. This yielded a total of 124 zones. Surprisingly,

we also found 161 zones deploying DNSSEC in our zone transfer data. Since 96 of the zones listed

under SecSpider already existed in our zone transfer data, we only had to obtain data from the

rest of the 28 zones that did not allowed us a zone transfer. (We excluded those 96 zones from the
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first data set.) To obtain data from the 28 new zones in the SecSpider data, we used the DNSSEC

Walker tool [62]. This tool relies on the presence of NSEC (NextSECure) or NXT (NeXT) records

which should be present in zones deploying DNSSEC. These records provide a way to discover all

of the records from within a zone without using zone transfer. Of the 28 zones we attempted to

walk, 4 were only partially walkable due to missing some NSEC or NXT records. The remaining 24

were completely walkable allowing us to get the same information as we would though zone transfer

without actually using the zone transfer query. Our final dnssec data set consists of 189 total zones.

5.4.1 Non-technical Data Collection Issues

While zone transfers yield valuable information for research purposes, the technique raises practical,

ethical, and legal questions. We encountered various reactions to our data collection efforts from

the zone administrators. Many of the early requests we received were concerns that a machine had

been compromised or that we were otherwise attacking their systems. As the project progressed, we

decided to alter the PTR records (used to map IP addresses to domain names) for each of the scanning

machines to indicate that they were involved in DNS research and encouraging the administrators

to perform a query for the TXT (TeXT) record on the host name for more details. The TXT record is

a free-form record, allowing one to put information in any format. This led the them to a web page

explaining the project in detail. This page attracted approximately 300 hits while the experiment

was on-going. Over half of the administrators that contacted us were supportive of the work, with a

few being being quite enthusiastic. A small number of them requested to have their servers exempted

from the scanning, which we promptly honored. One administrator seemed surprised that we would

perform such queries without prior permission. Further, even after hearing about the research, one

administrator was livid and stated that our entire prefix had been blocked from his network, with

the apparent exception of his mail server.

The issue of zone transfers has since reached the legal system. In a civil court ruling which

occurred after our data collection, a North Dakota civil court decision declared unauthorized zone

transfers in that state illegal [110]. While the circumstances in that case were unique, it is clear that

such queries can be viewed as controversial. This further raises the bar on collecting and analyzing

the type of data we present in this chapter.

5.5 Overview of Collected Data

We sanitized the data by removing repeated records, records with empty name field, records that

exhibited failed attempts at commenting, and records that were not supposed to have been trans-

ferred (such as those belonging to a sub-zone). We now present a combined overview of the collected

data.
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Table 5.1: Aggregate Statistics
Total .com/.net zones 74,326,215
Name servers by name 1,611,145
Name servers by IP 820,547
Zones successfully transferred 4,947,993
Record types defined 59
Record types seen in data 42
Valid record types seen in data 40
Record types seen in > 10 zones 31
Walking of DNSSEC zones 28

Table 5.1 presents the aggregate statistics about our combined data sets. We see a total of 42

record types, including the invalid, obsolete, and experimental ones. Some, such as SOA (Start Of

Authority), NS (Name Server), A (Address), and CNAME (Canonical NAME) are seen in nearly every

zone we examine. Interestingly, the SOA record, the only record type absolutely required for a zone

to exist, is the only one that we see in every zone. Even the vital NS is not present in 0.2% of zones,

even though it is required by the DNS specification, and despite the fact that we know every one of

these zones has at least one name server: the one we used to obtain the zone transfer. The next most

popular record type is MX (contains the host name and the priority of an email server). Most other

record types are much less widely used, some only appearing in a single zone. Figure 5.1 depicts

the number of zones corresponding to each record type that was seen in 10 zones or more. Clearly,

there are large differences in the extent of usage of each of these record types. Although our data

only contained zones from the .com and .net TLDs, we examined the LOC (LOCation) records for

the 1,306 zones which contained them, and found them to be well distributed geographically.
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Figure 5.2: Number of A records per zone in the combined data set (log-log scale)

5.6 Zone Size and Breadth

We now examine the size and breadth, the degree to which a zone spans across ASes and BGP

prefixes, of DNS zones contained across our two data sets.

5.6.1 Zone Sizes

One approach to looking at zone sizes is to look at the total number of records contained in various

zones. However, this approach is dependent on what record types a zone chooses to use. Some

records, such as CNAME, do not add any new hosts but provide extra information about an existing

record. Thus, we count the A records in order to estimate the size of a zone. Since all hosts must

have an A record, the number of A records in a zone should roughly correspond to the number of

hosts in the zone intended to be accessible though DNS. We ignore the AAAA (IPv6 address) records

in counting hosts since very few zones use IPv6 and even when they do, they usually have IPv4

records for the same hosts.

Figure 5.2 shows the number of A records per zone. As seen in the figure, a majority of zones

are small, containing only one A record. Some have more, but it is surprising how many more.

The largest has 2,073,715 A records. There are additionally 14 others with over 100,000 A records,

although no others with over 1,000,000. The largest zone we see has many A records in part because

they have an A record for each address in the 10.32.0.0-10.63.255.255 private IP address space in
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addition to enumerating every address in another public prefix. Most of rest of the zones with a

large number of A records follow either this pattern of an A record for every address in a prefix, or

they have a large number of domain names all pointing to the same IP address.

5.6.2 Zone Span

We measure zone span by examining the A records from each zone and find the AS and BGP prefix

to which the address belongs. To perform the classification, we use a BGP RIB from the Route

Views Project [120] from the same duration as our zone transfers. We use this to determine the

number of unique ASes and prefixes the zone entries span. In Table 5.2, we show the breadth of the

zones by the AS they belong to. A majority of zones, 56.32%, have A records contained in a AS.

94% of zones are contained in 2 or fewer ASes. Only a very small number of zones span more than

4 ASes. A small number of zones were exceptional, however. Specifically, one zone spanned 1,475

ASes, and another 40 spanned 100 or more ASes. This shows that the zones cover both ends of

the spectrum: from tightly co-located networks to highly distributed collections of machines. When

analyzing zones at the BGP prefix granularity, we found similar trends. We omit these results for

brevity.

These results are encouraging for name-based routing: they indicate that the majority of domains

can be easily aggregated into a single entry for the domain. A substantial portion of the remaining

domains require only one additional entry for the domain. For these domains, exceptional entries

may be required. For example, an organization may have the domain example.com in which most

of the hosts reside in a single AS. However, this organization may also have a subgroup of hosts in a

different AS, requiring an additional entry. Accordingly, an default entry for example.com could be

created while a more specific exceptional entry, such as uk.example.com, could be added for these

hosts that are routed differently. This would capture modern routing while still allowing significant

aggregation at the domain granularity.

Table 5.2: Number of ASes per Zone
Number ASes Number Percent Cumulative

Per Zone of Zones of Zones Percent
0 137,358 2.78% 2.78%
1 2,786,918 56.32% 59.10%
2 1,881,611 38.03% 97.13%
3 114,594 2.32% 99.44%

≥ 4 17,198 0.35% 99.98%
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5.7 Conclusion

In this Chapter, we examined domains in the Internet. We found that many DNS domains had only

a few hosts, but a few were quite large with millions of hosts. When we examined whether DNS

domains spanned multiple ASes, we found that the majority were contained in a single AS and over

97% of domains were contained in two or fewer ASes. However, some zones broke the trend: one

zone spanned 1,475 different ASes.

This work directly impacts the viability of name-based routing. In most cases, it is possible to

aggregate DNS hosts into a single domain label without affecting the network topology, as suggested

in Chapter 4. This is essential to minimizing the size of the routing table and the lookup times

required to forward packets. However, in many cases, the scheme must also allow multiple DNS

aggregate labels per domain. While two DNS aggregate labels will suffice for almost all of the

Internet, some exceptional cases exist and must be supported in such a scheme. Further, some

aggregation may be possible across multiple domains. We investigate this further in Chapter 6.



6

Investigating Domain Aggregates to

Reduce Routing Table Size

6.1 Introduction

In Chapter 4, we propose an architecture where packets are forwarded on host names. In Chapter 5,

we confirmed that we can often aggregate hosts in a domain into a single domain-wide entry. This

approach increases routing scalability by allowing us to store fewer entries at routers. However, even

with this aggregation, there are 153 million domains at the time of writing while there are currently

only about 300 thousand IP prefixes. Clearly, as we conclude in Chapter 4, it will be infeasible in

the foreseeable future to forward packets under our architecture in the required tens of nanoseconds

packet forwarding speeds.

We investigate an approach to reduce the number of routing table entries. The approach examines

if multiple domains can be aggregated together. If several domains are co-located in the same

network, we could group these domains and announce these aggregates. If routers were to forward

these packets using these domain aggregates, the resulting forwarding tables could be smaller. This

would reduce the memory requirements for storing the routing tables and hence lead to better packet

forwarding performance. Recall that this was a significant obstacle in the host name-based routing

proposed in Chapter 4.

To accomplish our goal, we resolve host names from a significant fraction of the Internet just as

a client would in order to retrieve the host’s IP address. For our measurements, we focus on Web

servers, as they are often a motivator for acquiring a DNS domain and should be representative of

host names. Using the IP addresses contained in these resolutions, we determine if hosts belonging

to many domains are co-located in the network topology. If so, they can be represented by an

aggregate routing table entry, which will reduce the size of routing tables depending on the extent of

50
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co-location. In performing these measurements, we examine about 59% of the domains to determine

Web server names and addresses throughout the Internet. From these measurements, we find:

• As much as 60% of the Web servers are co-hosted with 10, 000 or more Web servers for other

domains. This indicates that it many domains may be aggregated at the IP granularity which

may yield fewer entries in name-based routing tables, enhancing the scalability of the approach.

• More than 95% of Web servers share their AS with 1000 or more other Web servers. Such

co-location is consistent with the intuition that smaller organizations may use Web hosting

companies which results in co-located Web sites.

• In performing these measurements, we found some additional insights. IP-based blacklisting

can hurt co-located domains, so domain-based blacklisting is required to minimize collateral

blocking.

6.2 Data Collection and Methodology

We use two primary data sets for this analysis. The first is from the DMOZ Open Directory

Project [33]. The project contains user submitted links and is the largest and most comprehensive

directory of Web URLs. A typical URL from DMOZ data contains several pieces of information.

For example, in the URL www.example.com/content.html, www.example.com is the Web server

name, which belongs to domain example.com and top level domain (TLD) .com. The actual file

being accessed is content.html.

The DMOZ data set covers over 234 different TLDs, making it an international data set covering

over 90% of the TLDs. We use a snapshot of DMOZ data from October 28th, 2006. From the DMOZ

URLs, we extract the names of unique Web servers offering content. We conduct DNS lookups on

each of these names to get their corresponding IP addresses, which are returned in the form of

type A resource records. The unique IP addresses from these DNS responses are used to infer the

relationship between Web servers and IP addresses. If a Web server name resolves to multiple IP

addresses, we select the lowest IP address returned. This helps avoid counting a cluster of Web

hosting servers multiple times.

The second data set contains DNS zone files [124] from the .net and .com TLDs. These zone

files list each of the domains in the respective TLD zones. The data presented here is from the zone

files we obtained on March 7th, 2007. To obtain the Web server name for each domain listed in the

zone file, we simply prefix each domain name with “www.”, since most Web servers are named in

this fashion. We then resolve each Web server name into an IP address using DNS queries, as we

do for the DMOZ data set.
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The DMOZ data set contains URLs corresponding to .com and .net TLDs, in addition to other

TLDs from around the world. In fact, about half of the DMOZ Web servers correspond to these

TLDs. Since these domains are exhaustively listed in the zone files, we eliminate them from the

DMOZ data. Henceforth, when we refer to the DMOZ data set, we mean its curated version which

excludes entries from the .com and .net TLDs. Together, these two data sets represent a sizeable

chunk of the Web today, since they contain 75.7 million of the 128 million domains registered

worldwide in June 2007 [123].

Table 6.1 shows the number of unique URLs, Web servers, and IP addresses contained in both the

data sets. Two things are noteworthy about this table. First, the .com and .net TLDs contained in

the zone files by themselves contain an order of magnitude more domain names than the rest of the

TLDs represented in the DMOZ data. Second, for each data set, the number of unique IP addresses

belonging to the Web servers is also an order of magnitude less than the number of Web servers

themselves. This is an initial indication that many Web servers are co-located. We explore this in

detail in Section 6.3.

DMOZ Data Zone Files
(curated)

Number of URLs 4,667,792 -
Unique Web Servers 1,487,481 74,326,215
A Records Received 1,396,998 71,855,113
Unique IPs 487,797 3,641,329
TLDs Represented 232 2
Unique ASes Represented 12,374 18,356

Table 6.1: Overview of DMOZ and zone files data

6.3 Web Server Co-location

We begin by investigating where the Web servers are located in terms of the IP addresses of machines

that these servers are hosted on. Notice that our analysis focuses on the actual Web servers and

does not include the servers belonging to CDNs, which many well-provisioned Web sites tend to use.

Figure 6.1(a) shows the number of Web servers per unique machine as a percentage of IP addresses

and Web servers for the DMOZ data set. Figure 6.1(b) shows similar information for the zone

files. Note that the X-axis is a log scale in both figures. From these figures, we draw several

key observations. First, they show that most machines host only a handful of Web servers. As

many as 69 − 71% of the IPs in both our data sets host just one Web server. While this may

lead one to conclude that there is a one-to-one correspondence between the Web servers and the

IP addresses, the story changes completely when one looks at the Web servers per IP address as a

percentage of Web servers. We find that only between 4 − 24% of Web servers in our two data sets

are hosted on a machine by themselves. The rest are co-hosted on the same machines with other Web
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Figure 6.1: Cumulative distribution functions showing Web servers per IP address as a percentage
of IP addresses and Web servers

servers. This implies that while a rather small percentage of well-provisioned Web servers employ

dedicated machines to host, the rest are co-hosted. This co-hosting implies that domains may share

infrastructure and could be summarized in a single entry in name-based routing tables. This affects

the scalability and performance of name-based routing.

Figures 6.1(a) and 6.1(b) also illustrate the differences between the DMOZ and zone files data

sets. First, the X-axis differs in that the zone files have Web servers that have orders of magnitude

more Web servers per IP address than those in DMOZ data. Since zone files exhaustively represent

the .com and .net TLDs, this implies that more Web servers in these TLDs are co-located. Second,

Figure 6.1(a) also shows that a much larger percentage of Web servers represented in the DMOZ

data are hosted either by themselves or are co-hosted with a small number of other Web servers.

Specifically, as much as 84% of the DMOZ Web servers are co-hosted with 100 or fewer other Web

servers while only 15% of the Web servers contained in the zone files are co-hosted with 100 or fewer

other Web servers. Further, under 6% of the DMOZ Web servers are co-hosted with 1, 000 or more

Web servers while as much as 65% of the Web servers contained in the zone files are co-hosted with

1, 000 or more Web servers. In fact, as much as 60% of the Web servers in the zone files are co-hosted

with 10, 000 or more Web servers! There could be two explanations for the differences in the two

data sets. First, TLDs outside of .com and .net may be co-located less often. Alternatively, the

DMOZ data may be dominated by well-provisioned Web servers.

6.3.1 Co-location in Terms of ASes

We now analyze Web server co-location as seen from the perspective of ASes the Web servers are

located in.

Additional Data Used: In order to infer co-location in terms of ASes advertised by these ASes,
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we gather a third data set: a BGP routing table from a router in the Route Views Project [120].

The table contains 237, 819 prefixes advertised by BGP routers in the Internet, along with the ASes

that originate these prefixes. We use an April 22, 2007 snapshot of the routing table, which is from

around the same time as when we performed the DNS resolutions on Web server names. For each

IP address, we perform a longest prefix match on this table to obtain the AS for the IP address.
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Figure 6.2: Cumulative distribution functions showing Web servers per AS as a percentage of ASes
and Web servers

Analysis: Figures 6.2(a) and 6.2(b) show the co-location in terms of ASes for the DMOZ data

and zone files respectively. These figures show that 19.27% of ASes in the DMOZ data set and

10.78% in the zone file data have only one Web server. However, only a very small percentage of

Web servers are hosted in an AS by themselves. The case is more pronounced for the zone files,

where even fewer Web servers exist by themselves. Specifically, more than 60% of the DMOZ Web

servers share their ASes with 1, 000 or more other Web servers. Correspondingly, more than 95% of

the Web servers in the zone files share their AS with 1, 000 or more other servers. These findings

indicate that the Web is more highly co-located when seen from the perspective of ASes containing

the Web servers.

6.4 DNS Server Co-location

After finding extensive co-location in Web servers, we were curious to see whether such co-location

was present in the DNS infrastructure used. Since authoritative DNS servers are required for clients

to reach their targeted Web server, the co-location of DNS servers has important implications on

the availability of Web servers. Here, we look at the extent to which authoritative DNS servers are

co-located, both at the IP address and AS granularity.
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6.4.1 Additional Data Used

To infer DNS server co-location, we needed to collect information about authoritative DNS servers

for the Web servers contained in our two primary data sets. Fortunately, the zone files already

contain information on the authoritative DNS servers for each domain listed. However, the process

was not so straight-forward for the DMOZ data. We had to conduct DNS lookups for NS records to

determine the list of authoritative DNS servers for each of the Web servers contained in the DMOZ

data. Further, we resolved the output of each NS lookup, which is generally a host name, into IP

address using the DNS A record lookups.

For both data sets, Table 6.2 illustrates the unique authoritative DNS servers by name and also

the distinct IP addresses these correspond to. It also shows the distinct DNS servers by name and

IP address for the combined data set. We combine the data sets before further analyzing them

because 74.9% of the DNS servers from the DMOZ data are common to the DNS servers for the

zone files. This indicates that Web servers from a variety of different TLDs are hosted on the same

authoritative DNS servers.

DMOZ Data Zone Files Combined
DNS Servers 278,169 1,611,145 1,710,847
Unique IPs 223,992 820,547 875,122

Table 6.2: Authoritative DNS servers for DMOZ data and zone files

For DNS server co-location analysis based on ASes, we convert DNS server IP addresses to ASes

by using a BGP routing table described in Section 6.3.1.

6.4.2 Analysis

As shown in Figure 6.3(a), most DNS servers are authoritative for only a small number of domains

(and hence for the Web servers contained in those domains). Note the log scale on the X-axis. In

particular, 30% of them are authoritative for only one domain. The median number of domains a

DNS server is authoritative for is 4. However, there are several DNS servers that are authoritative

for a very large number of domains. In particular, there are 11 DNS servers in our list which are

each authoritative for over 1, 000, 000 domains, with the highest being authoritative for 3, 757, 103

domains! This raises questions about the availability of Web servers in the event of targeted DoS

attacks. We show the results for AS-level analysis in Figure 6.3(b). The key results for the AS

granularity are similar, with 63.61% of the ASes containing DNS servers that are authoritative for

100 or fewer domains. Also, we find 19 ASes that have authoritative DNS servers for over 1, 000, 000

domains, with the highest one hosting 9, 544, 010 domains.

While co-location threatens availability in the case of a DoS attack or system failure, another

factor may balance it. This factor is the redundancy of authoritative DNS servers, as recommended
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Figure 6.3: Cumulative distribution functions showing domains per DNS server and domains with
authoritative DNS servers per AS

by [78]. Indeed, when looking at the number of DNS servers corresponding to each domain in

the zone files, we find that almost all the domains have at least two DNS servers associated with

them. Some have many more. In fact, we see a maximum of 13 DNS servers per domain, which

incidentally is the maximum number of responses that fit in a DNS response packet. Figure 6.4

shows the percentage of domains that have a specified number of DNS servers.
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Figure 6.4: Percentage of domains with the indicated number of DNS servers

6.5 Conclusion

In this chapter, we examined whether domains in the Internet are topologically co-located. If so,

they can reduce the number of routing table entries in our name-based architecture where hosts
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must store host names instead of IP prefixes. We found that Web servers of 60% of domains are

co-located with 10,000 or more other Web servers. This may make it possible to aggregate many

domains together yielding a substantial reduction in the size of name-based routing tables.

While domain aggregates are feasible, they are not without their own issues. To be effective, these

aggregates must be distributed across the entire inter-domain routing infrastructure. Accordingly,

each organization must determine which domains can be aggregated and distribute this information.

This would require an aggregation format and protocol for distribution. Further, host names would

need to be mapped in packets to the domain aggregator, which routers would use to forward the

packets. Additionally, this information would have to be actively maintained: if a domain moves, all

routers would need to remove it from their aggregates and place them in the new domain aggregate.

Further, domain aggregates would be difficult for the domains whose hosts are distant in the network

topology. While the approach is feasible, it may not be practical. In Chapter 7, we explore an

alternative approach to scaling host name-based routing.



7

Using ASNs as Routing Locators

7.1 Introduction

The growth of the Internet has placed more pressure on routers. They must be able to forward

packets rapidly, often in a few hundred nanoseconds or faster. With these time constraints, high-

speed memory, such as SRAM, must be used to store the forwarding table for core routers. However,

SRAM is limited in capacity and the low volume networking community lacks the economies of scale

required to motivate increased capacity. Unfortunately, the number of IP prefixes on the Internet

continues to grow at an alarming rate, threatening to exceed the available memory capacity [77]. In

particular, some common networking practices further drive prefix growth in IPv4. In particular,

multi-homing, in which an organization uses two network providers for redundancy, and load balanc-

ing, in which an organization splits their traffic between two providers to reduce traffic bottlenecks,

contribute to growth. In other cases, organizations exceed the addresses available in their original

prefix and must acquire additional IP prefixes to accommodate these hosts. Often, such prefixes

cannot be aggregated, a pathology called address fragmentation, which leads to prefix growth. In

some cases, growth is caused by possibly accidental failures to aggregate otherwise aggregatable

prefixes [23]. In this Chapter, we investigate approaches to solve these scalability concerns.

In Chapter 4, we found that routing on DNS host names can eliminate the address space crisis.

However, the approach is not feasible for the Internet because of the performance and memory

overheads they inflict on packet routing, making the approach less scalable. Instead, we examine

approaches to solve routing scalability concerns and determine whether they are compatible with

using host names to identify hosts.

An emerging belief is that a separation of locators and identifiers can eliminate some causes of

routing table growth. The goal of such a separation is to allow routers to forward packets on locators

that are not connected to identifiers used for addressing purposes. The locators would be assigned at

the router or domain granularity to ensure compact routing tables. Accordingly, several proposals,

58
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including NIMROD [25], LISP [40], eFIT [75], ENCAPS [50], and ISLAY [67], have advocated using

routing locators other than IP prefixes. Though these proposals differ in details, the basic idea

behind each is to have the routers close to the sources encapsulate each packet in a special wrapper

that contains the locators for source and destination. Routers in the core of the Internet will forward

packets based only on these locators. When such a packet reaches a router near the destination,

the router will de-capsulate the outer layer and forward the original packet to the destination. To

accomplish the mapping of end-host identifiers to locators, the proposals advocate using a database,

which will be responsible for keeping the mapping information current.

In such locator-identifier split architectures, the routing locator is an important consideration,

yet has received less attention. Some proposals suggest using locators specific to a router, such as

a router IP address. Unfortunately, such a scheme would be sensitive to growth in the number of

inter-domain routers. Instead, we examine using locators at the AS granularity. We specifically

examine the viability of using ASNs, which are already used by BGP to prevent routing loops. In

this chapter, we examine their suitability as routing locators. There are an order of magnitude fewer

ASNs than IPv4 prefixes (30,672 ASes vs. 288,685 prefixes). However, we must also examine how

the approach is affected by inter-domain forwarding table growth factors, such as multi-homing,

traffic engineering, and address fragmentation. We further examine the resulting forwarding tables

sizes and packet forwarding speeds. From these experiments, we find:

1. Routing using ASNs is not sensitive to multi-homing, load balancing, address fragmentation,

or failures to aggregate.

2. Even with traffic engineering growth, the ASN-based forwarding tables will be approximately

35.1% of the size of equivalent IPv4 forwarding tables.

3. ASN-based packet forwarding is an order of magnitude faster than IPv4.

7.2 Factors Affecting Growth in ASNs

Currently, the number of ASNs in the Internet are an order of magnitude fewer than the number

of IP prefixes. While this bodes well for smaller forwarding tables at the core routers, we must

examine the issue of ASN growth carefully: if ASNs grow tremendously and overtake the growth

in the number of prefixes, all the benefits would be lost. In Section 3.2, we described the various

aspects of forwarding table growth in IPv4. Here, we examine whether such growth would occur in

terms of ASNs if ASNs were used as routing locators. We then examine the impact of these factors

on the forwarding table.
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7.2.1 Address Fragmentation and Failures to Aggregate

In IPv4, address fragmentation and failures to aggregate hinder routing. However, these factors do

not affect inter-domain routing under locator-identifier split proposals. The unaggregated prefixes

are mapped to the same aggregated locators by the encapsulating router. For example, with frag-

mented addresses, each prefix would require separate mapping table entries. However, the result

of a lookup on each prefix would result in the same locator being used, masking the growth from

inter-domain routers. Accordingly, neither failures to aggregate nor address fragmentation would

affect inter-domain forwarding table size or ASN growth. Further, this aggregation would not result

in a loss in routing flexibility.

7.2.2 Multi-homing

As the Internet grows and new administrative domains are formed, some growth in the number of

ASNs is inevitable. However, other factors also effect ASN growth and their impact needs to be

carefully examined. For example, work by Huston indicates that ASN growth is fueled by the growth

in multi-homing at edge networks [53, 54]. However, since locator-identifier split architectures use

a mapping database, the mapping database can support the multi-homing functionality, avoiding

multi-homing growth when ASNs are used as locator.

In our scheme, organizations need not acquire ASNs in order to multi-home. Instead, the or-

ganization can rank each of its providers, indicating the primary provider, secondary provider, and

so on. The organization would then simply add each of its providers and their ranks to a mapping

database entry for the address range. Upon receiving a packet destined to that organization, the

encapsulating router would consult the mapping database and select the provider with the highest

priority. If that provider becomes unreachable, the provider with the next highest priority will be

selected automatically. Accordingly, an organization can obtain the benefits of multi-homing, yet

not have to participate in BGP, acquire an ASN, nor inflate inter-domain routing tables.

We now estimate how many of the ASNs in the current Internet exist primarily for multi-homing.

Such stub networks would not require an ASN in our scheme. While our approach is necessarily

conservative, we find that almost a fifth of the ASNs in the current Internet exist solely for the

purpose of multi-homing. These ASNs are unnecessary in our architecture and can be eliminated,

aiding scalability.

Methodology: To estimate the number of multi-homed ASes, we identify ASes composed solely

of multi-homed prefixes. We use the approach by Bu et al. [23] to determine a multi-homed prefix.

In this approach, a prefix is considered multi-homed if and only if that prefix is a subset of a prefix

from a neighboring AS. Accordingly, we consider an AS to be fully multi-homed if all of the prefixes

it originates are sub-prefixes of neighboring ASes. This approach does not help in identifying ASes
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that use provider-independent prefixes for multi-homing and hence causes us to under-estimate the

number of multi-homed ASes.

We use two types of data from the Route Views Project [120] in order to perform this analysis.

The first is a BGP RIB from November 15, 2008. From this RIB, we determined which AS originates

each prefix. Next, we obtain all the BGP updates during the entire month of November for each of

the 42 Route Views vantage points. We examine the AS path in each routing update to determine

the peers for each AS1. For each prefix, X, in the RIB, we determine which ASes, if any, have a

super-prefix, Y, that encompasses the prefix. If the ASes originating prefixes X and Y are directly

connected, we consider prefix X to exist for the purpose of multi-homing. If a stub AS is composed

solely of multi-homed prefixes, that AS is considered to exist primarily for multi-homing.

Results: We find that 5,614 (18.70%) of the 30,027 ASNs in the Internet primarily exist for multi-

homing. This estimate is a lower bound because we are unable to infer multi-homed ASes that do not

use provider-dependent addressing. These results suggest that our scheme would require only 24, 458

ASNs if deployed in today’s Internet. With the widespread usage of provider-independent prefixes

for multi-homing, likely fueled by address fragmentation, this is likely a significant underestimate

of the amount of ASNs that could be reclaimed. Further, since modern ASN growth is largely

expected to be fueled by multi-homing and since such growth would not affect ASNs in our scheme,

ASN growth in our approach may slow dramatically.

7.2.3 Load Balancing

Load balancing provides an important traffic engineering goal and gives network operators flexibility

in handling high volume traffic. In IPv4, load balancing causes prefix growth in the forwarding table.

However, load balancing, like multi-homing, can leverage the mapping database to avoid causing

growth in the inter-domain forwarding table when ASNs are used as locators. As in the case of

multi-homing, an organization may associate multiple providers with its address range in a mapping

database entry. However, unlike multi-homing, which ranks the providers to indicate the primary

provider, load balancing would use the same rank for multiple providers. When an encapsulating

routing processes a packet destined to such a load-balanced address range, it consults the mapping

database, independently and randomly selects one of the associated locators, and uses that locator

in all subsequent packets to that address range. This facilitates traffic engineering while avoiding

route fluttering and growth in the inter-domain forwarding tables.

While load balancing may be possible without causing growth, other traffic engineering may still

be impossible under these situations. In these cases, an existing AS must split into multiple ASes,

increasing the number of forwarding table entries. Accordingly, we must include such growth when

estimating the forwarding table size.

1Some links may be missed if no associated updates were issued during the month snapshot. This would cause an
underestimation of multi-homing.
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7.2.4 Other Traffic Engineering

Today, a forwarding table entry at the core routers is comprised of IP prefix and the associated next

hop information. Under our architecture, it will be the ASN and its associated next hop information.

A simple way to estimate forwarding table sizes under our architecture would be to count the number

of ASNs advertised in the Internet and subtract the ASNs that exist solely for multi-homing purposes.

However, doing so would fail to account for growth caused by traffic engineering, in which ASes use

multiple distinct paths to route their traffic. While simple load balancing can be accomplished in

our scheme without causing growth, other traffic engineering may cause growth in forwarding table

sizes and must be examined.

We now estimate the number of forwarding table entries under our scheme. We find that even

without optimizing modern routing for our architecture, forwarding tables under our scheme would

require 35.1% of the forwarding table entries in modern routers, even after accounting for traffic

engineering.

Methodology: To estimate the number of forwarding table entries in the presence of traffic engi-

neering, we examined all update messages received by each of the 42 vantage points in the Route

Views Project during the month of November, 2008. For each update, we recorded the originating

AS and the path used to reach the advertised prefix. If a stored prefix was updated, we deleted

the old entry and stored the new entry. To exclude simple load balancing and solely multi-homed

stub ASes, which do not increase ASNs in our scheme, we applied rewriting rules to the route up-

dates. Specifically, load balanced IP prefixes were rewritten as their aggregated prefix and solely

multi-homed ASes were replaced in the AS path by the appropriate provider AS for the prefix.

During a routing change, some updates to the prefixes for an AS may not be atomic. Accordingly,

some prefixes may be updated to the new path while others still reflect the old path, leading to a

temporary increase in path diversity for an AS. We regard this transient state as an artifact of

current routing practice and not as a traffic engineering goal. To exclude this inflated diversity, we

performed periodic snapshots of the routing table after a brief period of inactivity. This analysis

allowed us to estimate the number of unique paths used to reach each AS originating a prefix. Since

each path is potentially an indication of traffic engineering, it allowed us to estimate an upper bound

on the number of entries per ASN.

Results: Our data had information about 30,672 ASes and 288,685 prefixes. We found that 27% of

the ASes had a median of one unique route, indicating that the AS path was identical for each prefix

originated by that AS. These ASes could be summarized by a single entry in the forwarding table.

An additional 25% of ASes had a median of two unique routes, indicating that an extra AS entry

would be required to exactly duplicate modern traffic engineering goals. In total, 76% of ASes would

require 4 or fewer entries and 94% of ASes would require 10 or fewer entries. Accounting for each

extra entry due to traffic engineering after excluding load-balancing and solely multi-homed ASNs
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yielded a total of 101,310 entries, which was approximately 35.1% of the 288,685 prefixes in the

BGP forwarding tables at the time. This indicates that in spite of traffic engineering, the forwarding

tables at the core routers under our scheme will have about one third the number of entries in the

worst case.

7.3 Forwarding Table Lookup Performance

Today, forwarding table entries consist of IP prefixes of variable lengths and routers perform a longest

prefix match to determine the interface for a packet. Under our scheme, packet forwarding will occur

on fixed length ASNs. Now, we examine the impact of this factor on packet forwarding speeds.

Methodology: Modern routers use the trie data structure to perform longest prefix matching on

IP prefixes [122], which are variable in length. A trie must perform O(log(n)) memory references,

where n is the number of bits in an IP address. ASN-based routing differs because ASNs are fixed

length. Thus, exactly one match has to be found. To exploit the fixed-length nature of ASNs,

we explore a hash table lookup method. This approach requires a single memory reference in the

absence of collisions, yielding a performance of O(1). Accordingly, the performance of ASN-based

packet forwarding would be similar to simple hash table performance.

Until 2006, ASNs were two bytes in size, allowing for direct indexing into the forwarding ta-

ble: the destination ASN could simply be used as an index into an array of 216 entries. If each

forwarding table entry required only four bytes of next-hop information, this would require a mere

256KBytes, minimal computation, and a single memory reference, yielding almost optimal perfor-

mance. Recently, 4-byte ASNs have become available [95]. Since this larger address space was

designed for future growth, it is essential to include the 4-byte representations in our performance

analysis. Accordingly, we assume 4-byte ASNs subsequently.

To compare the performance of routing in our approach with current routing, we use software

implementations of lookup algorithms. In practice hardware implementations are used to accelerate

forwarding lookups because hardware can yield faster memory accesses, can facilitate parallelism,

and accelerate operations such as hashing. While we are unable to implement these approaches in

hardware, the software implementations serve as a lower-bound on performance and can show the

potential benefits of a new algorithm.

To evaluate the hashing approach, we use a hash table implementation, the unordered map data

structure from the TR1 C++ library, to store and access entries. For a baseline comparison, we use

a software implementation of a Tree Bitmap trie for IPv4, which is described in detail in our prior

work [105].

To populate the ASN-based hash table, we store an entry for each of the ASNs required for the

forwarding table described in Section 7.2.4. This requires 101,310 entries. For the IPv4 baseline,
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we load each of the prefixes found in a November 15, 2008 routing table for a Route Views router,

which is from the same time as the ASN analysis. This routing table had 288,685 IP prefixes.

All performance tests were done on a machine with a Pentium IV 3.2 GHz processor with 2GBytes

RAM. To measure the timings, we use the RDTSC instruction, which can be used to measure the

elapsed cycle count, yielding nanosecond timing resolution.

Results: In Table 7.1, we show the results of our ASN and IPv4 models. In the second column of

Table 7.1, we show the results of the ASN approach. We note that this results in very low memory

usage. The performance of this scheme is excellent, requiring only 155ns on average to perform a

lookup or an update operation. In the third column, we show the results for the IPv4 baseline. We

can see that the IPv4 routing table requires over three times as much memory, about 9.73 MBytes,

and takes longer to perform a lookup, averaging about 1, 129 ns.

Forwarding Approach: ASNs IPv4
Number of entries: 101,310 288,685
Storage required (MBytes): 2.90 9.73
Lookup Times (ns):

Average: 155 1,129
Standard Dev.: 40 253
Minimum: 133 543

Update Times (ns):
Average: 157 4,018
Standard Dev.: 96 1,283
Minimum: 134 2,528

Table 7.1: Performance of ASN-based and IPv4 forwarding

From this analysis, we find that ASN-based packet forwarding makes lookup and update operations

an order of magnitude faster while requiring less than one-third of the memory requirements of IPv4

forwarding. These lookup operations may be greatly accelerated by hardware optimizations and may

greatly accelerate the packet lookup process, access control list (ACL) processing, and additional

data-plane operations, expediting packet forwarding.

7.4 Issues with ASN-based Routing

When proposing ASN-based routing, we must consider the ramifications this will have for inter-

domain and intra-domain routing protocols and the mechanism that will be used to translate network

layer headers to ASN locators.
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7.4.1 Routing Protocols

In IPv4, inter-domain routing protocols provided reachability information for IP prefixes. In our

scheme, they must be adopted to provide similar reachability for ASNs. This approach has been

explored in some proposed next generation protocols, such as HLP [115], which performs routing

at the ASN granularity and yields greater routing scalability. Accordingly, integrating ASNs into

inter-domain routing protocols is possible and may yield additional advantages.

Intra-domain routers would be required to exchange locator information to forward packets

between inter-domain routers. Further, the intra-domain routing protocols in these ASes would be

required to convey this information. Alternatively, inter-domain routers could encapsulate packets

to traverse these intra-domain routers unmodified, by using protocols such as IP-in-IP encapsulation

or multiprotocol label switching (MPLS) [101].

7.4.2 Scalability of the Mapping Database

In locator-id separation schemes, such as LISP and eFIT, encapsulating routers use the mapping

database to determine the proper locator for packets using the destination network layer address.

The scalability and implementation of this mapping functionality is an important consideration in

all locator-identifier split proposals. While the issue is not unique to our particular choice of locator,

we discuss it here in our context and explore the choices to ensure scalability.

LISP and eFIT locator-identifier-split proposals require edge router to perform the encapsulation.

These routers, which are near the customers, exchange network address to locator mappings. In

this push-based approach, the routers distribute this information continuously. The push-based

approach has the advantage of lower latency for the mapping functionality because all the mapping

information is locally available at each router that needs it. Further, the end-hosts would not have

to change in this approach, easing deployment. For the approach to work, the mappings must be

distributed, either through a separate mapping protocol or through existing routing protocols. While

this approach appears compelling for smaller mapping databases, Krioukov et al. [71] rightly point

out that such databases may not be able to scale in the long term. Further, this approach adds

another point of failure.

Instead, we propose modifying the DNS to include this mapping functionality. Like in traditional

DNS, hosts request mappings from a DNS server on demand (a pull-based model). In addition to

the regular DNS records, servers would also distribute locator entries for the destination machines in

this model. The sender could then construct a destination packet and include the locators for inter-

domain forwarding. DNS has demonstrated the feasibility and scalability of pull-based mapping

architectures: the DNS has easily scaled to billions of entries. In this approach, we assume that end-

hosts perform the mapping instead of the edge routers. This avoids a bottleneck at the routers and
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allows hosts to cache the results, avoiding per-packet lookups at routers. We discuss the mapping

database in further detail in Chapter 8.4.3.

7.5 Conclusion

In this chapter, we examined the viability of using ASNs as locators for inter-domain packet rout-

ing. In this analysis, we used conservative estimates for the benefits of a locator-identifier split

on multi-homing. Unfortunately, without knowledge of the policies of each AS, we cannot detect

many instances of multi-homing, such as provider independent multi-homing. Further, the traffic

engineering employed in modern routing may be optimized for ASN usage, avoiding the inflation of

forwarding tables. However, we cannot know the purpose of this traffic engineering and must error

on the side of caution. Accordingly, the results of our analysis may be unnecessarily pessimistic

about the benefits of ASNs. Even with this conservative analysis, we found that ASNs make a suit-

able locator for inter-domain routing and offer both compelling scalability and performance benefits,

making them a strong candidate for locators.

ASN-based locators are only part of the story. In Chapter 8, we examine how to merge an ASN-

based locators and host name identifiers into a unified architecture. In creating such a scheme, we

must consider how host names are mapped to ASN locators, the performance associated with this

mapping, and the implications of any packet header growth.



8

A Unified Architecture

8.1 Introduction

Thus far in this dissertation, we have described an architecture that embraces a split between routing

locators and end-host identifiers. In Chapter 4, we discussed how DNS host names could be used

as identifiers for hosts. After examining a few approaches to scale host name-based routing, in

Chapter 7, we examined the locator-id separation architectures with ASNs as routing locators and

the benefits that would result. In this chapter, we examine how these two schemes can combine to

form a unified architecture.

In presenting this unified architecture, we note that this scheme would minimize the inter-domain

routing overheads by leveraging ASN locators while simplifying end-host identification to host names.

We find that the combined architecture offers simplicity, solid performance, provide extensive iden-

tification space for hosts, and enhances the DNS, aiding caching and reducing the viability of many

cache poisoning attacks. With these results, we find that such an architecture has significant advan-

tages.

We begin by describing our architecture through an example. Suppose a client, host1.isp.com,

in AS X, wants to communicate with a server, www.website.com, in AS Y (see Figure 8.1). The

following sequence of steps will occur:

1. The client contacts its DNS resolver to get the ASN for www.website.com. (It could be

configured with its own ASN route locator or may get it from the resolver as well.) It then

creates a packet with a header containing host1.isp.com and www.website.com as source

and destination addresses and X and Y as source and destination ASN locators. The packet is

sent to the default router, 1.

2. Router 1 forwards the packet by looking up Y in its forwarding table, as prescribed by NIM-

ROD, LISP, eFIT, and ENCAPS. Subsequent core routers, 2, 3, and 4, do the same.

67
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Figure 8.1: An example scenario

3. When the packet arrives at router 5, the router recognizes its own ASN and forwards the

packet using the destination host name, www.website.com.

4. To reply to the client, the server simply reverses the source and destination host names and

ASNs.

Our architecture bears similarity to modern TCP/IP architecture but also differs from it in

substantial ways. In our architecture, the clients contact the DNS resolvers only for the first packet

of the connection, just as they today. However, the DNS response packets return router locators

instead of IP addresses for end hosts. Also, the packet headers in our architecture contain source

and destination host names and locators when today they only contain IP addresses. Further, the

routers forward packets based on ASNs, which are structured differently from the IP prefixes used

today.

In this chapter, we discuss the issues involved in realizing this unified architecture. In partic-

ular, we must carefully consider the header design, implications on DNS, and the scalability and

performance of the architecture.

8.2 Header Design

In our architecture, packets must contain both router locators and host names for end-host identifi-

cation. Figure 8.2 shows a basic design of the new identification layer that contains variable length

source and destination host names. The ASN locators are stored in a layer below the identification

layer. This layered model allows the addressing layer to be utilized over diverse locator layer imple-

mentations. In the shaded region in this diagram, we show an example locator header; the actual



8. A Unified Architecture 69

locator header would be dependent upon the locator protocol in use. We leverage the IPv6 header

to arrive at this preliminary design. To make processing the variable length names easier, the header

also contains the length of both the names. These 8 bit values indicate the number of characters

present in the name. Notice that the length indicates the number of characters, not bytes. Due to

the restricted character set of domain names, each character can be represented in 6 bits. Names

that do not terminate on the byte boundary are padded with zeros to the next byte boundary.

Flow LabelVer-
sion

Hop Limit

0 8 16 24 32

Next 
HeaderPayload Length

Traffic 
Class

Source 
Name Len.

Destination 
Name Len. Variable ...

...  Length Source Name

Variable Length Destination Name

Source Locator

Destination Locator

Hop LimitProtocol Reserved

Figure 8.2: Name-based routing header (shaded region represents an example locator header)

8.3 Components Required

Many components must be updated to support this new architecture. DNS, intra-domain routing,

and other intra-domain protocols must move to host names and domains from using IP addresses.

We examine each of these components in this section.

8.3.1 Impact on DNS

The DNS today contains at least 42 different record types [65]. This includes records to find mail

servers and authoritative DNS servers for the domain, records to map host names to IP addresses,

and records to map IP addresses to host names (reverse DNS mapping). Each of these records have

a time to live (TTL) associated with it which allows the client resolvers to determine how long to

cache the record. The DNS functionality required under our architecture is simpler since only one
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type of record to map host names into routing locators is required. In Chapter 5, we found that

most domains are co-located, resulting in just a single ASN routing locator for each domain, or in

some cases, a small number of locators. Accordingly, we design our records to aggregate at the

domain and sub-domain granularity. This allows topologically diverse DNS domains to divide into

unique sub-domains while still optimizing for the more common co-located domain. Thus, the DNS

response for www.example.com may simply be “example.com X 24”, where X is the ASN locator for

the domain example.com and 24 is the TTL for the record.

This approach has two outcomes. First, domains will have to maintain very few records to

represent all of their hosts. Second, since one response covers all the hosts in that domain or sub-

domain, client resolvers only have to get the locator once for all the hosts in that domain until

the TTL expires. This thwarts statistical and related data attacks to poison the DNS cache, since

only a single record can be obtained. Further, since domains tend not to change provider networks

frequently, the TTL times for these records may be larger than the TTLs used in the more fine-grain

DNS records of today. This significantly reduces the number of queries the DNS server witnesses

from the clients.

When performing lookups, DNS resolvers at the clients must perform a longest sub-domain

match. While individual labels in the host name, such as example and com must be exactly matched,

the longest matching entry for a host-name must be used. For host names not in a sub-domain, the

domain entry would be the best match. For hosts in a sub-domain, the sub-domain entry would

be the best match. Some domains may have sub-domains that are not geographically diverse. As

in traditional DNS, a wild-card entry, such as “*.example.com” could be used to indicate each of

these sub-domains matches to the same entry.

DNS has also been used for load balancing, which leverages the caching behavior of DNS. In

our architecture, we handle this directly by allowing host name delegation. A single host name may

actually represent a pool of load-balancing hosts. In such a case, this group host name can delegate

the connection to a host in the pool in order to process the request. For example, the host name

“www.example.com” could serve as an alias for “www-1.example.com” and “www-2.example.com.”

When receiving a request for www.example.com, the destination router may select one of the hosts

in the pool and denote the delegation in the packet header before forwarding it on to the dele-

gated host. The selected host can then reply to the packet and include evidence of the delegation1

to the initiating host when processing the request. For example, www-1.example.com may reply

to the initiating host indicating that it is an alias for www.example.com. In the case of TCP,

www-1.example.com may include an ACK for the initial sequence number used by the initiating host

as evidence of the delegation. The initiating host can subsequently direct its packets to the dele-

gated host, www-1.example.com, allowing the communicating parties to create a stateful connection

without affecting other members of the delegation pool.

1This evidence could be in the form of echoing a correct nonce value from the request or using strong cryptography,
such as a digital signature.
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Other DNS record types simply leverage the DNS as a distributed database but are not actually

key components in the system. The proposed architecture can use host delegation to support these

records as well. The MX record is used to find the mail servers for a domain. In our scheme, we

can reserve the host “mail” in each domain to serve as an alias to the domain’s mail server, if it

exists. For example, “mail.example.com” would delegate to a number of other mail server names

(e.g. mail-1.example.com and mail-2.example.com). Other record types, such as RP, SRV, and

TXT records, as well as other less common DNS records, would use host delegations, much like MX

records, each with their own reserved host name.

8.3.2 Intra-domain Routing

Intra-domain routers in the destination network must be able to forward packets using their host

names. Accordingly, they must maintain a forwarding table based on host names. To construct this

table, routers must know the hosts and domains associated the AS. Like in IP-based intra-domain

routing, routers must be configured with the information for directly connected networks. To learn

about other networks within the AS, they must use routing protocols. Accordingly, intra-domain

routing protocols must be updated to allow the exchange of domain, subdomain, or host name

reachability.

8.3.3 Intra-domain Implications

In addition to routing, other protocols within an organization must be changed to reflect the usage

of host names instead of IP addresses. For hosts and routers to learn the MAC address associated

with a host, protocols such as the Address Resolution Protocol (ARP) must be updated to provide

host name to MAC address bindings. In the Dynamic Host Control Protocol (DHCP), servers would

provide clients with host names and sub-domains rather than IP addresses and subnet masks, while

in ARP hosts would request the MAC address associated with a given DNS host name. Other

protocols in use would be required to support host names instead of IP addresses. While many of

these changes may be straightforward substitutions of IP addresses, further investigation is required.

8.4 Architecture Validation

Our architecture introduces a number of changes to the current Internet operation. Specifically,

we must consider four types of issues: 1) DNS concerns (latency and the scalability of mapping

from host names to ASNs), 2) inter-domain routing (packet forwarding performance and memory

requirements), 3) increased packet headers due to extra information, and 4) intra-domain routing

on host names (feasibility and performance). Of these, it is straightforward to see that the our
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architecture impacts DNS latency only in positive ways. This is because in our scheme, ASN locators

exist at domain or sub-domain granularity and requests need not be sent to remote authoritative

DNS servers for each individual record. Beyond this, the usual DNS caching practices today continue

to be effective and may be able to use longer TTLs since domains tend not to change as frequently as

individual records. In Chapter 7, we found that ASNs can be used scalably for inter-domain routing.

We know examine the last three concerns, namely the impact of increased layer three packet header

size, the performance associated with intra-domain forwarding on host names, and the mapping

database scalability.

8.4.1 Packet Header Growth

Using host names as addresses may result in higher packet header overhead. In order to calculate

this overhead, we need to know the length of an average domain name. To determine this, we

collected zone files from the .com and .net gTLDs on June 8, 2007. These zone files contain each

second level domain registered under these gTLDs on that day. Ideally, we would have liked to have

the zone files from the rest of the gTLDs and all the ccTLDs. However, getting access to that data

was not possible. To compensate, we collected data from the DMOZ Open Directory Project [33].

The project contains user submitted links and is the largest and most comprehensive directory of

the Web. Our input data, collected on October 28, 2006, has 9,633,835 unique URLs and 2,711,181

unique second and third-level domain names. We then combined the DMOZ data and the zone

file data, eliminating any duplicate domains. Combined, the data set contained 79,088,314 unique

domains. This represents a significant percentage of the 128 million total domains in the Internet in

June 2007. Using this data, we determine the distribution of the number of characters in a domain

name.

While the maximum number of characters in a host name could be 255, individual labels separated

by the ’.’ character could be up to 63 characters. In our data, the maximum length of any domain

was 67 characters. The distribution was roughly normal, with a median of 15 characters long. If

hosts within domain names follow a similar pattern, the host name would be a median of about

30 characters. Further, due to restrictions in the DNS character set (only case-insensitive letters,

numbers, dashes, and periods are valid), only 6 bits are required to encode each character, resulting

in a 23 byte address. Along with an extra byte to encode the name’s length, each address would be

24 bytes, which is 50% larger than an IPv6 address. While larger, these addresses easily fit within

modern packet size limitations.

8.4.2 Intra-domain Forwarding Performance

In our architecture, once traffic reaches the destination network, it must be forwarded based on its

host name. Since destination networks may be large, we must examine the issue of intra-domain
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scalability closely, especially since the forwarding overhead is required on a per-packet basis.

To determine the feasibility of the approach, we created a simple hash table using the C++

TR1 unordered map implementation. We performed a mapping between domains represented as

strings and next-hop information, represented as a 4 byte integer. As an example, we loaded 50,000

domains into the table, which required 5.465 MBytes of memory. Using this hash table, we obtained

an average lookup of 438ns, with a standard deviation of 135ns. These lookups were performed on

commodity PC hardware using DRAM storage. After optimizing and using dedicated hardware,

intra-domain routers should be capable of supporting thousands of domains in a single subnet.

In previous work, we found that a small number of hosts provide virtual hosting for a large

number of domains [106]. Such hosting providers could simply use additional routing locators to

reduce the destination network size, reducing the overheads of processing host names.

8.4.3 Mapping Database Performance

The database that maps end-host identifiers to host names is an important consideration in our

architecture and in locator-identifier split proposals. Some approaches, such as ENCAPS and ours,

specify a pull-based mapping database by leveraging the DNS. Other approaches, such as LISP and

CRIO [127], examine a push-based mapping database in our scheme. Here, we examine the trade-offs

and show that a pull-based database offers a superior and more scalable choice.

Push-based Databases

For small mapping databases, a push-based architecture offers greater performance, since all entries

are locally available. Unfortunately, as the mapping database grows, the growth increases at each

encapsulating router. The work by Krioukov et. al [71] shows that such an approach for a mapping

database cannot scale long-term, threatening the entire scheme. Here, we look at the overheads that

would be incurred to support a push-based database.

Upon startup, all routers would have to learn about the domain name to ASN mappings of

existing domains. This could be a large amount of information given the number of domain names

in the Internet today. However, this information is not required to be propagated often. The primary

source of overhead comes from the addition and deletion of domain names. (The actual domain name

to ASN mapping of a particular entry rarely changes.) These changes will have to be propagated in

a timely manner, though some delay is acceptable. We now estimate the control plane overheads of

these changes.

Data Used: Toward this goal, we take daily snapshots of the .com and .net zone files from May

17, 2007 to May 24, 2007. These files contain the domain names in these TLDs. We then compare

each day with the previous day and determine the number of changes (addition or deletion) between
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them. This yields 7 snapshots of daily changes, shown in Table 8.1. Given that the .com TLD is

the biggest and the busiest [123], we hope to have captured the hardest case.

Analysis: The first key observation from Table 8.1 is that millions of domains get added or

deleted each day in the .com and .net TLDs. Next, we estimate how many new control plane packets

will be needed to propagate these updates. For that, we need to know the length of a domain name.

From the analysis in Section 8.4.1, we note the median character length of 15 characters. Using this

information, and the maximum Ethernet packet size of 1500 bytes, we estimate the number of new

update packets changes to domain names will require. Table 8.1 shows the the number of update

packets per day and per minute.

Snapshot .com .net Total Required Updates
per Day per Minute

1 3,849,085 384,726 4,233,811 32,320 22.44
2 2,432,957 250,500 2,683,457 20,485 14.23
3 2,149,471 211,933 2,361,404 18,026 12.52
4 1,078,509 87,914 1,166,423 8,904 6.18
5 3,877,005 351,652 4,228,657 32,280 22.42
6 4,227,177 475,554 4,702,731 35,899 24.93
7 1,650,616 155,533 1,806,149 13,788 9.58

Table 8.1: Total changes in a day to the .com and .net zone files

To put these update numbers in perspective, we compare them with the BGP update rate. To

do so, we examine the snapshots from the Route Views Project [120] from February 15 to March

19, 2007. From this, we took the total number of BGP updates per day for each of 46 sites and

divided them evenly to find the number of updates per second. Averaged across the sites, these

results showed a daily average of 51.3 updates per minute, with a standard deviation of 24.21. The

average maximum rate was 143.65 updates per minute. In fact, the average minimum rate was 31.03

updates per minute, which is greater than the maximum rate in a push-based scheme.

From these results, we find that a push-based database could be supported for today’s Internet.

However, the overheads incurred in maintaining these records is on the same order as BGP updates,

which are considered to occur at an alarming rate. With the scalability concerns of such a database,

we question whether such an approach is viable in the long-term.

Pull-based Database

Pull-based mapping architectures have been successful on the Internet. The DNS has demonstrated

that pull-based architectures can easily scale to billions of entries on modern hardware. By using

a pull-based database for mapping identifiers to locators, routers can scalably provide an encapsu-

lation mapping. Further, work on DNS has found that caching individual DNS records for popular

destinations at edge networks has been quite effective in boosting resolution performance [64]. In

this section, we analyze whether such caching is also effective for domain to ASN mappings.
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Data Used: To judge the effectiveness of caching domain name to ASN mappings, we obtained

a log of all the DNS requests for a week starting June 13th from clients within our department.

These logs indicate the time the request that was made and the hostname being resolved. Table 8.2

shows an overview of the data. We note that the total number of unique domains queried by hosts

from within our department in an entire week is 4 orders of magnitude less than the total number

of domains on the Internet, which greatly supports the caching approach.

Start Date June 13, 2007
End Date June 19, 2007
Number of Queries 2,991,793
Number of Domains Queried 29,947
Total Number of Domains 128 million

Table 8.2: DNS Query Information

Analysis: In Figure 8.3, we plot a cumulative distribution function (CDF) of the percentage

of DNS queries covered by the given percentage of DNS domains. We note that this graph only

shows the most popular 20% of domains, yet reaches a coverage of 97% of the requests. In fact,

caching only the 1, 200 most popular domains (4% of the unique domains requested) would yield a

theoretical cache hit rate of 88.89%. These results are similar to the work in [64], which found that

the most popular 20% of host names accounted for about 80% of the queries
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Figure 8.3: CDF of the percentage of DNS queries for top percentages of domains

While Figure 8.3 supports caching, it does not account for any churn in the cache resulting from

client usage, which could make it hard to leverage the benefits of caching. To examine cache churn,

we used a cache of 1, 200 entries. (We realize that the limits we impose on the cache size are artificial

since an average edge router should be able to cache all the unique domains accessed in our case.

However, we use these limits to test cache churn anyway.) We found that a simple cache using a least
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recently used (LRU) eviction policy achieves a cache hit rate of 86.02% on our data. We conclude

that caching popular domain to ASN mappings appears to be a fruitful approach.

With the effectiveness of caching and lower mapping update overheads, we recommend a pull-

based database in resolvers in order to ensure scalability, should hosts require such support.

8.5 Discussion of Architecture Feasibility

This combined architecture raises a number of issues, from new addressing paradigms to deployment

concerns. In this section, we explore these issues in detail.

8.5.1 Asymmetric Addressing

In the current Internet, two end-hosts in networks with disjoint addressing schemes are unable to

communicate with each other without third-party translation assistance. However, our scheme sup-

ports hosts that overcome this limitation using asymmetric addressing. In the asymmetric addressing

paradigm, two deploying end-hosts that understand the addressing schemes used in both networks

will simply use the remote host network’s protocol as the network layer in the packets they create.

While such a packet would normally not be able to leave the source network, by using a locator-

identifier split architecture, the hosts can encapsulate the destination network’s network layer header

in a header containing the ASN locators for the source and destination networks. The routers in

the source edge network will forward the packets using the locator layer, as will subsequent routers

until the packets reach the destination network. At the destination network, intra-domain routers

will forward the packets using the destination network’s network layer protocol.

To illustrate the concept of asymmetric addressing, we provide an example using IPv4 and IPv6

hosts. While asymmetric addressing can work with any two network layer protocols, we use IPv4

and IPv6 as they are well-known examples. In Figure 8.4, we show an end-host, A, in an IPv4 edge

network and a second host, B, in an IPv6 edge network. Both A and B understand IPv4 and IPv6,

allowing them to exploit asymmetric addressing. The process uses the following steps:

1. A performs a DNS lookup on a host name belonging to B. The DNS results include an IPv6

address and a locator for B. Since A’s network is IPv4 only, A would normally be unable to

communicate with the IPv6 host without some gateway translating the packets. In our scheme,

A realizes it must employ asymmetric addressing.

2. A creates a locator layer header and supplies its own ASN locator, 1, as the source and the

locator obtained from DNS, 2, as the destination locator. A sets the locator layer’s next header

field to indicate it is carrying an IPv6 packet.
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3. A creates an IPv6 header with B’s IPv6 address as the destination and a reserved address as

the source IPv6 address. This reserved address simply indicates asymmetric addressing and

that the source address is invalid. A sets the next header field in the IPv6 header to indicate

it is carrying an IPv4 packet header.

4. A creates an IPv4 header above the IPv6. This IPv4 header contains A’s legitimate IPv4

address as the source and contains a zeroed destination address.

5. A then transmits the packet.

6. The source and intermediate routers use the destination locator to forward the packet to the

destination network.

7. The intra-domain routers in the destination network then forward the packet using the desti-

nation IPv6 address to host B.

8. When B receives the packet, it examines the IPv6 header and, based on the source IPv6 address

and protocol field, determines asymmetric addressing is being used.

9. B then examines the encapsulated IPv4 header to determine A’s IPv4 address.

These steps allow A to send a packet to B using asymmetric addressing. B is able to examine the

packet it receives to determine A was the sender. To reply, B performs a similar process, but reorders

the IPv4 and IPv6 headers:

1. B creates a new packet beginning with the locator layer. It simply swaps the source and

destination locators from A’s packet and indicates an IPv4 network layer is being encapsulated.

2. B then creates an IPv4 header above the locator layer and uses A’s IP as the destination and

uses a reserved source address to indicate asymmetric addressing. B sets the IPv4 protocol

field to indicate IPv6 is encapsulated.

3. B then creates an IPv6 header. In the IPv6 header, B includes its own IPv6 address as the

source address and zeros for the destination IPv6 address.

4. B can then transmit the packet.

5. The source and intermediate routers will forward the packet to the destination network using

the destination ASN locator.

6. At the destination network, intra-domain routers will send the packet to A using the destination

IPv4 address.
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Figure 8.4: Example instance of asymmetric addressing

While this example illustrates asymmetric addressing using IPv4 and IPv6, the approach would

work with other network layer protocols. Further, we note that the address separation of locator

networks yields another important result: since a destination is now addressed by an (ASN locator,

network layer address) pair, the network layer address need not be globally unique. Like the work

in IPNL [44], this approach allows the reuse of the IPv4 space to avoid the impending IPv4 address

space crisis.

Augmenting the Network Stack

In traditional dual-stack machines, a separate network stack is used depending on the network layer

in use. In our scheme, a host must process two different network layer headers before processing

the application layer. In Figure 8.5, we show the processing required for IPv4 and IPv6 packet

processing, based on the network layer used in the destination network.

This process requires additional processing of a network layer header. However, even heavy-

weight cryptographic alterations to the networking stack, such as IPSec [68], can easily be accom-

modated in most hosts. In comparison, the network layer processing overheads associated with IPv4

and IPv6 are quite low, making such an approach viable.

8.5.2 Integrating ASNs as Locators

Here, we discuss aspects of integrating ASNs as locators in the locator-identifier split proposals. In

some protocols, such as ENCAPS and LISP, the IP packet header is reused for inter-domain routing

in order to facilitate deployment. In this case, the locators would be 4 byte values and be placed in

the IP header as source and destination addresses. Since both architectures require packets to be

encapsulated before they reach the inter-domain routers, ASNs can be used directly as the locators

without being confused with the IPv4 addresses used for end-hosts. However, since the ASN fits into
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Figure 8.5: Network stacks used in asymmetric addressing

the IPv4 address space, routers using modern IP forwarding can operate without changes. Protocols

that do not use IPv4 encapsulation have more latitude on how to incorporate the ASN in their

locators.

When forwarding packets, the routers simply consult the locator layer and use the destination

ASN address for packet forwarding. To make such decisions, the routers must be able to map

ASNs to out-going interfaces. BGP performs such mapping from prefixes to out-going interfaces.

In LISP and eFIT, the forwarding table simply maps ASNs to out-going interfaces. When a router

receives a packet destined to a host within its own ASN, it must remove the locator layer and use

the embedded network layer information to forward the packet to the end-host. In our architecture,

the hosts perform the mappings. However, we also compare push and pull-based mappings for

network-wide resolvers.

8.5.3 Host Mobility

Host mobility is becoming increasingly important with smaller devices that travel from network to

network. Approaches to separate location and identity can naturally support mobility. The Mobile

IP approach [91] is designed for host mobility in IP networks and leverages tunneling. However, when

NIMROD, LISP, ENCAPS, or eFIT are used, the destination router can update the locators in the

inter-domain routing layer in packets destined to mobile hosts and forward them to the host’s visiting

network. In replies, the mobile host can include the visiting network locator, allowing the other host
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to learn its new location, and avoiding triangular routing. While our approach is compatible with

host mobility, the underlying inter-domain routing protocol is the appropriate place to incorporate

mobility functionality and we rely upon these mechanisms to support it.

8.5.4 Partial Deployment

Our architecture is likely to endure a long period of partial deployment. This partial deployment

can be in terms of legacy routers or in terms of legacy hosts. LISP accommodates a legacy router

by decapsulating packets before they reach the legacy router. In our approach, cooperating routers

could tunnel through a legacy router by using IPv4 packet encapsulation. Legacy hosts could be

supported through dual-stack processing in routers and via legacy DNS servers. However, a variant

of network address translation (NAT) could still be used in order to tunnel packets between router

locators without inflating forwarding table sizes. Refinement of these approaches remains an open

issue.

With the significant changes proposed by this architecture, a straight-forward deployment path

is essential. The architecture can be enacted in stages, allowing incremental deployment.

In the first stage of deployment, only the ASN layer would be implemented. We envision backbone

providers to be the first to deploy since the ASN layer offers a key incentive: it allows traffic to be

forwarded quickly due to fixed-length lookups. In fact, the MPLS protocol has been successful in

provider backbones, so it is feasible that the ASN layer would like-wise be successful. However, unlike

MPLS, the ASN layer would not need to be stripped from packets unless the next implementing ASN

does not implement the ASN layer. The final AS would strip the ASN layer until its intra-domain

infrastructure had been upgraded to process the ASN headers. Both the ASN and IPv4/IPv6

forwarding tables could be simultaneously loaded, allowing a router to perform forwarding using

either header type. In this stage, the network layer protocol could remain IPv4 or IPv6. Instead

of mapping domains to ASNs, source edge routers would map IP prefixes to ASNs using longest

prefix matching. Further, destination edge routers would forward packets in the same manner they

do today.

In the second stage, intra-domain routing would transition from IPv4 or IPv6 to the name-

based identification layer and end-hosts would be required to process both the locator and identifier

layers. This transition could occur independently in each source network but compliant networks

may remain dual stack in order to communicate with legacy networks. Upon reaching wide-spread

second stage deployment, legacy support could be eliminated, completing the transition.
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8.6 Conclusion

In this chapter, we combined the approaches from Chapters 4 and 7 to create a unified architecture

that enables routing and forwarding without IP addresses. This architecture creates a new Internet

which breaks away from the IP addresses, instead embracing names as host identifiers and ASNs

as locators. This design decouples routing from addressing, which IP addresses (inadvertently)

entangled. The outcome is a faster, expandable, and more scalable Internet.

In designing this architecture, we looked for a holistic approach to solving the address space crisis

and routing scalability concerns. In our initial design, we explicitly did not attempt to minimize

the number of routers or hosts that would have to change to support the architecture. As a result,

our scheme will ideally change each of these components in order to obtain better performance and

scalability. This design decision has significant implications on deployability: the more components

that must change, the greater the expense to deploy. This hinders adoption regardless of the merits

of the architecture.

To address these limitations, we devise a deployment path and discuss the incentives for adopting

the approach. In particular, the core Internet providers can lead the way by adopting ASN locators.

This phase of deployment is heavily incentivized: ASN locators yield smaller forwarding tables,

faster lookups, and slower growth than IP prefixes. The second phase also offers incentives, allowing

hosts to have more available addresses. At the same time, changes to the networking stack at hosts

can be done in software, reducing the expense of upgrades. However, adoption is likely to be tied

to operating system upgrades that provide newer networking stacks. Accordingly, the second phase

may be quite prolonged, with some hosts possibly never upgrading their networking layers. In this

case, translating devices such as NATs may be useful for interoperability.



9

Intra-Domain Security

9.1 Introduction

Intra-domain security is becoming increasingly more important. According to a 2007 study [96], 84%

of the information security-related incidents could be attributed to current or former employees. And

it is not that only malicious employees caused all the damage – the study noted that lost or stolen

laptops and other portable devices are the primary culprit. With increasing pervasiveness of such

devices, it becomes even more important to take a careful look at the issue of intra-domain security.

Unfortunately, the deployed versions of heavily used intra-domain protocols do little to protect the

network or the clients. As a result, damage could be caused not only by a misconfigured, malicious,

or compromised devices but also by adversaries masquerading as insiders.

Current approaches to eliminating security concerns in intra-domain protocols have been re-

stricted to individualized extensions. In some cases, implementations of these extensions are lacking.

In others, even if an implementation exists, it is not deployed. In this chapter, we take a fresh ap-

proach to securing intra-domain protocols by adopting a unified approach to intra-domain security.

In doing so, we associate credentials with a given host name.

We first consider the Dynamic Host Configuration Protocol (DHCP) [35]. We choose DHCP

because it is the first protocol an end host invokes to join the network. Unfortunately, DHCP

has no built-in authentication mechanism. Thus, a rogue DHCP server can become a part of the

network and cause clients to be misconfigured with incorrect router or domain name system (DNS)

information, thus opening them to a multitude of attacks, such as phishing. DHCP also fails to

protect against adversaries who exhaust the pool of IP addresses available to the DHCP servers,

effectively launching a denial-of-service (DoS) attack on the legitimate clients by depriving them of

network access. We secure DHCP by allowing both the clients and DHCP servers to authenticate

each other. A consequence of our approach is that it configures each host with a certificate it can

used to authenticate itself to any server or service within the domain.

82
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Next, we consider the Address Resolution Protocol (ARP) [93]. ARP is critical to mapping IP

addresses to link layer addresses. Due to the lack of authentication, ARP is vulnerable to cache

poisoning attempts from adversaries who act as clients. This poisoning can be used to launch DoS

attacks or even sophisticated man-in-the-middle attacks. We modify ARP to reject any responses

which do not contain a valid certificate verifying the address binding.

Other protocols routinely used in the intra-domain setting also suffer from various insecurities

arising out of issues with authentication. In particular, the Secure Shell (SSH) protocol causes the

client to use the leap-of-faith approach while encountering a new server due to the lack of proper

channels to validate servers’ public keys. Similarly, in IP Security (IPSec), clients and servers often

resort to authenticating each other using relatively weaker mechanisms due to unavailability of each

others public keys. Both IPSec and SSH already support certificates. By providing certificates which

may be used in these protocols, our approach helps make this support practical to use.

Our approach does not rely on the presence of any Internet-wide public key infrastructure. Thus,

any organization can deploy it independent of any other. Additionally, our approach also offers

increasingly greater inter-domain security as it is adopted by more organizations. Our evaluation

results show that the cryptographic overheads for the DHCP and ARP protocols can be easily

accommodated by existing intra-domain infrastructures. This implies that our approach is practical

and provides incentives for deployment.

9.2 Security Issues in Intra-domain Protocols

Here, we discuss the key features and inherent insecurities of commonly used intra-domain protocols

which our system secures. For each of these protocols, work already exists in securing them indepen-

dently. We discuss this work in Section 2.4. However, those solutions are specific to the protocols,

and so require separate deployments to secure each. For most, these existing solutions are not yet

widely deployed. Our contribution is a unified system for securing all the protocols discussed.

9.2.1 DHCP

DHCP provides a framework for passing configuration information to hosts on a TCP/IP net-

work [35]. The configuration of clients using DHCP is advantageous on a local area network for

several reasons: it allows centralized administration, IP addresses pooling can take advantage of

systems that are not always active, and new hosts can be added without requiring specialized con-

figuration.

For IP address allocation, DHCP supports three mechanisms. The first, dynamic allocation,

allows DHCP servers to assign IP addresses to clients for a limited period of time. This is the most
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popular mode of DHCP operation, typically used for client machines. It allows unused IP addresses

to be returned back to the pool of available IPs, and IP addresses to change without updates to

the network. The second, static DHCP, allows network administrators to specify permanent IP

addresses for specific clients, identified by their MAC addresses. Each time a DHCP request is

issued from a given MAC, the same IP address is supplied, causing the machines to continuously be

available at the same IP address. The third, manual allocation, allows the network administrator to

manually assign IP addresses to a clients, and DHCP is used simply to convey the assigned address

to the client. Static DHCP and manual allocation are typically used for servers. In addition to IP

configuration, DHCP is also used to convey other bootstrapping parameters to the clients, including

the IP address of the default router, IP addresses of DNS servers, and the subnet mask.

DHCP has no built-in authentication mechanism. As a result, it suffers from various insecurities.

First, an adversary can join the network as a DHCP server and provide clients with misleading

configuration information which could be exploited later on. For example, a DHCP server under

an attacker’s control could bootstrap hosts with information about a router in its control instead of

the one they are supposed to use, thus redirecting traffic to destinations not intended by the host.

Second, an adversary could join as a client on the network, spoof its MAC address, and generate

bogus requests to exhaust the pool of IP addresses at the DHCP server. This would make legitimate

clients unable to acquire an IP address and effective launch a DoS attack on them.

9.2.2 ARP

ARP is used to map IP addresses to link layer (commonly MAC) addresses. For robustness, ARP

allows hosts and intra-domain routers to discover these mappings dynamically. It takes advantage of

the fact that many link layer technologies, including Ethernet, support broadcast. Before answering

an ARP query, a host or router first checks for the existence of the desired mapping in its cache. If

the desired mapping is not found there, it broadcasts the query. Each entity on the local network

receives the query but only the host whose IP address is contained in the query responds with its

MAC address. The recipient caches the mapping for subsequent use.

The insecurity in ARP arises because anyone can send ARP queries on the network and anyone

can respond to them. In particular, an adversary could send an incorrect response to an ARP query

and cause poisoning of ARP caches. While incorrect entries in general could cause DoS attacks on

legitimate clients, a concerted manipulation of entries in the ARP cache allows an attacker to launch

a man-in-the-middle attack and eavesdrop or alter traffic.

9.2.3 SSH

SSH is an application layer protocol used for secure remote access. It also allows for secure file

transfers and port forwarding. Once established, the communication between parties in the SSH
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protocol is secure; however, there are weaknesses in verifying that the remote server being connected

to is legitimate.

In SSH, the clients are asked to verify the public key associated with the server they request. The

user generally has two options, either obtaining the public key fingerprint in an out-of-band fashion,

or simply taking a “leap of faith” and accept the key without verifying it. Upon doing so, the public

key is entered into a database and a warning issued if a different key is ever presented for the same

host. The leap-of-faith approach provides protection against subsequent man-in-the-middle attacks,

but does not protect against such an attack during the initial connection.

9.2.4 IPSec

The IPSec protocol, a popular virtual private network (VPN) protocol, allows hosts to establish

cryptographic tunnels to transmit data. These packets can be simply authenticated or authenticated

and encrypted. IPSec does a good job of securing the communications over the VPN. The problem

we address is the method IPSec uses to authenticate clients.

IPSec requires both of the communicating end-hosts to be configured with the shared credentials

or public keys of the other participating end-host, which can increase administrative overheads.

Instead, many large networks use pre-shared secrets, which have undesirable security properties.

9.3 Overview of our Approach and Threat Model

9.3.1 Threat Model

We focus on two categories of attacks. The first are attacks that adversaries can launch by mas-

querading as legitimate clients or servers. The second are attacks that legitimate clients and servers

can launch by impersonating other clients or servers. In both of these categories, we ignore attacks

that simply aim to congest links with spurious packets and in turn launch DoS attacks. We assume

that hosts that simply flood the network with traffic will be quickly identified by an administrator

and removed from the network.

9.3.2 Overview of our Approach

Our approach assumes that each organization has generated a (public, private) key pair for use in

its domain locally and that each server and client in the domain is configured with the public key

of the domain. We also assume that the domain uses its private key to sign the public key of each

server in the organization in the form of a certificate. These certificates are used to authenticate the

servers in various intra-domain protocols.
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The first protocol we secure is DHCP. The basic idea is for the client to use the public key of the

domain and verify that it is talking to an authorized DHCP server using the certificate presented

by the DHCP server. This process eliminates the attacks introduced by rogue DHCP servers. The

DHCP server authenticates the client by requiring credentials, such as a user name and password,

before providing it with a viable configuration information. The two-way authentication ensures that

only authorized clients are allowed to join the intranet, thus eliminating attacks from adversaries

who join as clients and exhaust the pool of IP addresses. Before obtaining configuration information

securely through DHCP, the client also generates a (public, private) key pair. Upon verifying the

authenticity of the client, the DHCP server issues the client a certificate, which contains the client’s

public key. The security of all other intra-domain protocols, including ARP, IPSec, SSH, Secure

Sockets Layer (SSL), DNS, and routing, naturally follows from this certificate.

Figure 9.1 shows the certificate chain hierarchy within the example.com domain. Each of the

servers shown in this figure, DHCP, DNS, and IPSec, possess a certificate signed by the private key

of the domain. The hosts acquire their certificates from the DHCP server. Other protocols, such as

ARP or SSH, are also secured but can be executed by any of the clients or servers in the domain.

example.com
Root Key

DHCP IPSECDNS

host1 hostN...

Figure 9.1: Example certificate chain hierarchy

We augment traditional certificates with information on permission within the domain. Specif-

ically, they have a notion of access flags, indicating the rights of the certificate owner. Thus, when

verifying the validity of certificates, members of the domain can seamlessly determine whether the

certificate issuers were authorized issuers. For example, the certificate for the DHCP server(s) will

have a flag that the server is authorized to sign certificates for the hosts configured via DHCP. We

describe this in more detail subsequently.

9.4 Securing DHCP

Our approach relies on the DHCP server being able to associate a public key with every user on a

machine. We first discuss the case of returning users, for whom the DHCP server already maintains

the public keys. The case of how new users obtain a (public, private) key pair is discussed in

Section 9.4.2.
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Figure 9.2: Traditional DHCP protocol compared to our secured DHCP implementation

9.4.1 Proposed DHCP Operation

The process of obtaining an IP address and configuration information through the traditional version

of DHCP in use today consists of the following four steps, shown in Figure 9.2(a). In the first step,

the client wishing to join the network issues a broadcast DHCP Discovery message on the network.

The client seeks an IP address through this message. This message may also indicate the address

and other settings the client would prefer to receive, which is common for a client returning to a

network and attempting to reclaim a previously used address. The DHCP server responds to the

client in unicast with a configuration Offer message which includes the IP address it is offering.

This message may include settings such as subnet information, a default gateway, DNS servers,

lease length, and address information for the host, among other things. Next, the client broadcasts

a Request message for the offered configuration if it likes the offer. If the configuration is still

available, the server finally responds with an Acknowledgment message, at which point the client is

configured according to the offered information.

Our approach does not introduce any new messages in the DHCP exchange. However, we modify

each of the four messages in the DHCP exchange to provide security. The modified DHCP exchange

is shown in Figure 9.2(b). The description of each of the modified messages follows.

Discovery Message: Just like traditional DHCP, this message is broadcast to find any DHCP

servers on the network segment. We introduce two additional parameters in this message. The first

is the public key of the user on a machine, which is used by the DHCP server to retrieve the previous

settings for this client. If the client possesses multiple MAC addresses, the MAC address contained

in the link layer header of the packet can be used to retrieve the appropriate settings. The second

parameter we introduce is a nonce value. This is a randomly generated bit string which helps ensure

the freshness of the response from the server.

Offer Message: Upon receiving the Discovery message, the DHCP server determines the offer
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to make. This step is similar to its counterpart in traditional DHCP except that the public key

of the client is used to retrieve previous settings instead of simply the MAC address. To prevent

rogue DHCP servers from misconfiguring the client, we require that the server provide proof that it

is legitimately associated with the domain and that it is not simply replaying an older response. To

meet the first requirement, the server includes a full certificate chain to a root of the domain. The

client can verify this chain by using the public key of the domain that all clients are configured with.

To meet the second requirement, the DHCP server replies with a signature covering the nonce value

sent by the client in the DHCP discovery message. The server also includes its own nonce value

to ensure the client’s liveliness. To prove authenticity, and to prevent modification of the values in

transit, the offered settings and nonce value are signed by the DHCP server’s private key.

Request Message: Upon receiving a DHCP offer, the client must determine whether to accept

the offer. To avoid being misconfigured, in our scheme, it confirms that the offer is valid. It first

determines if the certificate chain in the Offer message includes a certificate signed by the domain

key, which the client also trusts. If so, the client can use the certificate chain to verify each certificate

and subsequently the DHCP server. If no trusted entity is found, the offer should be rejected. Once

the public key for the DHCP server is validated, the client verifies that the signature for the offer is

correct. Next, the client evaluates the offer itself, just as in traditional DHCP. If it decides to accept

the offer, it broadcasts a DHCP Request message for the settings offered. The message includes the

desired settings used in the DHCP Offer message. The message also includes the client’s public

key and a new nonce value that must be echoed by the server. The settings, the server’s last nonce

value, the client’s new nonce, and public key are signed using the client’s private key. By signing

the server’s last nonce value, the client proves the Request message is not being replayed.

Acknowledgment Message: In the final step, the DHCP server constructs an Acknowledgment

message by providing the settings, the nonce value from the client, and a certificate for the host to

use with other intra-domain protocols. The settings and nonce value are signed with the server’s

private key and the signature is included in the message. The client can verify the signature using

the certificate information obtained from the DHCP Offer message. Further, the client can confirm

its issued certificate is valid by using the provided certificate chain and the DHCP server’s public

key.

Example Certificate: An example of the certificate issued by the DHCP server under our scheme

is shown in Figure 9.3. Though conceptually similar to the SSL certificates we use everyday, this

certificate contains additional information. First, it indicates binding information for the host,

including the host name, IP address, and MAC address. Next, it contains the access flags that

indicate what is allowed. For example, a typical host will not be allowed to issue certificates or run

an SMTP server but will be allowed to establish IPSec connections. Finally, the certificates contain

issue date and expiration date. The issue date is the time at which the DHCP server issues the
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certificate and the expiration is set to when the DHCP lease will expire1.

Certificate
Issuer:

     Name: dhcp.example.com

Subject:

     Name: client-14.dhcp.example.com

     IP:   1.2.3.4

     MAC:  00:01:02:03:04:05

Issue Date:  2008-01-01-23-59

Expire Date: 2009-01-01-23-59

Access Flags:

     IPSec Access: ALLOWED

     SMTP Server:  DENIED

Client Public Key:

     00:cb:15:11:a4:32:89:b5:de:c1...

Figure 9.3: Example of a certificate under our approach

9.4.2 Bootstrapping New Clients

When a new client first connects to the network, or it connects with a different user than has

been seen on it before, it is unrecognized by the network and considered unauthorized. To be

bootstrapped, the client must first generate a (public, private) key pair for the current user. It then

approaches the DHCP server through the DHCP Discovery message as before. When the DHCP

server fails to find an entry for this client’s public key, it isolates the client and requires the client

to authenticate itself using alternative organization authentication services, such as RADIUS [100]

or a captive portal, which is a secure Web authentication page the client will be directed to instead

of their intended destination. When the client authenticates, it provides the user’s public key and

the client’s MAC address to the authentication system, which then communicates the key and MAC

address to the DHCP server. The DHCP server then knows that this is a valid public key for some

user on the system with the given MAC address, but does not have any settings associated with

it. The authentication system can refuse to accept a new public key for users for which it already

knows several public keys. This step ensures that the DHCP server knows the public keys for each

authorized user, every valid user in an organization is allowed to acquire only one key per MAC

address, and each user is limited to a low number of public keys concurrently registered, preventing

the user from spoofing a large number of MAC addresses and using them to exhaust the pool of IP

addresses from the DHCP servers.

Notice that our approach does not attempt to prevent MAC address spoofing on a small scale.

Further, it does not prevent a user from being associated with several MAC addresses, which may

1For applications users use remotely, such as IPSec or SSH, the certificate does not require MAC, IP, or DNS host
name information. Instead, a separate longer-term certificate can be used. We discuss this in detail in Section 9.5.2.
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be useful if a user has multiple computers or network interfaces (e.g. wired or wireless). It also does

not prevent a user from changing its MAC addresses at any point, which may be useful in the rare

case where two devices have identical MAC addresses.

9.4.3 Formal Discussion of Security

In the secure DHCP protocol, we must ensure the legitimacy of clients and servers engaging in

the protocol. We must also ensure that no adversary is able to disrupt correct protocol operation.

Further, no entity, including adversaries or legitimate clients, should be able to acquire any more

than one IP address per MAC address, subject to a maximum allowable number of MAC addresses.

These requirements can be translated into the following five properties:

• the DHCP server is trustworthy

• the offered settings are not manipulated by an attacker

• messages are not replayed

• each client possesses exactly one (public, private) key pair at any point

• the client holds the private key associated with the offered public key

We now justify how our protocol design preserves the above properties. The first property,

trustworthiness of the DHCP server, is addressed by the certificate chain. If a DHCP server provides

a valid certificate issued by a party trusted by the client, in this case the domain key, the client can

be assured that the DHCP server is valid if the digital signature is correct.

The second property, that the offered settings are not manipulated by an attacker, holds because

we require that the settings offered by the DHCP server are signed.

The third property, that messages are not replayed, holds because our protocol requires that

both the client and the server use nonces to ensure the freshness of their messages. Both the client

and server put fresh nonces in their messages and the other party echoes them for verification. To

prevent modification of nonces in transit, we require for them to be signed when echoed.

The use of RADIUS server or captive portal ensures that each user possesses exactly one valid

(public, private) key pair per client at any point. Thus, the fourth property is satisfied. This

property ensures that the clients are unable to secure any more than one IP address per allowable

MAC address.

Finally, the fifth property, that the client holds the private key corresponding to the public key

it offers to the DHCP server, holds because we require the clients to issue digital signatures, which

require the use of private key.
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In our protocol, the DHCP server must perform a public key operation before the client has proven

its authenticity. This can lead to DoS attacks targeting the DHCP server’s processor resources.

Instead, the DHCP server can require the client to reply to a nonce value proving its liveness before

generating a signature. This extra round-trip could optionally be required only when the server is

under heavy processor load.

9.5 Securing Other Intra-domain Protocols

In designing our intra-domain security approach, we leverage the DHCP server as the gatekeeper for

the network. It distributes certificates to hosts in a secure and verifiable manner and thus provides

them with a mechanism to prove their authenticity in later communications, even when utilizing

services, such as SSH, from outside the intranet. We now describe how our approach secures other

intra-domain protocols.

9.5.1 Securing ARP and Preventing IP Spoofing

We secure ARP through adding additional operations to the ARP protocol. Under our scheme, an

end host transmits the regular ARP request as is done today. However, when replying to an ARP

request, it must include the certificate it obtained from the DHCP server showing the IP and MAC

binding along. The requester can then verify the certificate to confirm that the response given by the

responder is accurate. ARP responses without accompanying valid certificates verifying the address

binding would be rejected. This simple extension eliminates both ARP cache poisoning attempts

as well as any man-in-the-middle attacks. Also notice that even though ARP will require expensive

public key operations under our scheme, they only have to be done on the order of once every 15

minutes or so, when ARP cache entries expire. We evaluate these overheads in detail in Section 9.8.

While the association between MAC and IP addresses is secured by our modifications to ARP,

a host can still spoof a valid MAC and IP combination. This can be prevented in two ways:

by proving authenticity in each packet or leveraging DHCP snooping. To prove authenticity at

connection establishment, a client may sign their message and include a secret key encrypted using

the server’s public key. In subsequent messages, the client and server may simply use a nonce and

the secret key to construct a message authentication code and embed this code in the body of each

message, allowing the other client to verify its authenticity. To avoid a DoS attack, the server may

force the client to respond to a nonce before verifying the client’s signature and decrypting the secret

key for usage in subsequent messages.

While effective, providing authenticity of each message incurs a modest additional overhead

at the end-hosts. Instead, DHCP snooping by the switching infrastructure can leverage network

topology to avoid requiring per-packet verification. As mentioned before, switches today sometimes
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employ DHCP snooping to prevent ARP cache poisoning and IP spoofing. Essentially, such switches

monitor DHCP traffic to create allowable MAC address and IP bindings, and associate them with

individual switch ports. When a packet arriving on an interface does not match the binding, the

packet is discarded. With our approach, switches can employ stronger DHCP snooping protection.

While we do not need DHCP snooping to prevent ARP cache poisoning, we can leverage it to

protect the intranet against IP spoofing because without it, our approach can provide this protection

but with high overhead. Essentially, we require the switches to be configured with the the public

key of the domain and DHCP server(s). The switch would then permit any DHCP discovery or

request messages, but only permit DHCP offer or acknowledgment messages that were signed by

the DHCP server. Upon seeing a DHCP acknowledgment for a host, the switch would verify the

acknowledgment and add the MAC, IP address, and switch port associated with the end-host to its

white-list, allowing the host to send regular traffic on the network. Upon receiving traffic from hosts

not in the white-list, the switch would drop the packet and issue an ARP request for the IP address

associated with the end-host. If the host issues an ARP reply with a valid certificate issued by the

DHCP server, and a signature showing possession of the associated private key, the switch would

add the host to the white-list.

9.5.2 Securing SSH

As mentioned before, SSH takes a leap-of-faith approach while verifying servers to clients. By

leveraging the certificates distributed by the DHCP server, clients can securely verify servers. The

SSH protocol already allows a certificate to be incorporated in the protocol to authenticate the public

key [126]. Upon connection establishment, the SSH server presents a certificate with its public key.

If the certificate is issued by a trusted party, contains the public key, and is verified successfully, the

client can trust the public key for the server. This is supported in the SSH Tecita software from

SSH communications [111], and is supported by OpenSSH [119] with a patch [92].

The scheme we have discussed so far allows SSH to work seamlessly when both machines are

members of the intra-net. However, if a host leaves the intra-net and its DHCP lease expires, the

associated certificate will also expire, preventing the remote client from being able to authenticate

with members of the domain. To combat this problem, we propose the DHCP server issue a client

two certificates: one containing the client’s MAC, IP, and host name bindings as before and another

that omits these fields, making the expiration independent of the DHCP lease, allowing it to have a

much later expiration date. When interacting from outside the domain, the client can provide this

certificate. Under this approach, the other clients can only identify the remote machine by its public

key. This certificate may only be used for remote machines; machines residing in the intranet must

use the certificate containing their MAC, IP address, and host name.

Our system provides infrastructure that facilitates certificate usage for SSH. This can be used
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to allow host verification, preventing man-in-the-middle attacks. However, user authentication is a

separate issue that must be handled by the SSH protocol itself.

9.5.3 Eliminating IPSec Insecurity

As mentioned before, some IPSec deployments rely on shared credentials for the protocol. When

used solely for confidentiality, these organizations may post these pre-shared secrets on public Web

pages to enable dissemination. Unfortunately, such an approach thwarts efforts to authenticate the

other IPSec participant when performing keying. This weakness could be eliminated by simply using

public key cryptography; unfortunately, these public keys are often not available at the client or at

the server today. However, by leveraging the certificate of the IPSec server under our scheme and the

certificates possessed by individual end hosts, our approach can remove this insecurity. The IPSec

protocol already has support for using certificates to identify IPSec participants. So, our approach

requires no change to the protocol. As with SSH, IPSec may use a separate certificate for remote

machines to confirm the machine is a member of the domain, but not be tied to a specific MAC, IP

address, or host name. This separate certificate may only be used for remote hosts.

9.5.4 Securing Intra-domain SSL

Certificates issued by the DHCP server can also be used to authenticate servers for SSL. Accordingly,

if authorized, any machine in the domain may operate an SSL server which will be trusted by all

other members of the domain without requiring additional infrastructure.

9.5.5 Securing Intra-domain Aspects of DNS

Since the DNS server in our scheme possesses a certificate that any entity in the network can verify

using the public key of the domain, we can enable DNSSEC within the domain even irrespective of

who else deploys. This in turn ensures that DNS messages can be authenticated and checked for

integrity.

Also, when establishing DHCP connections, clients may request customized host names to be

associated with their machines, using the DHCP fully qualified domain name option [113]. Under

the option, the DHCP server or the client may notify the DNS server of the update to the A

record mapping the domain name to the IP address. Since the DHCP server is responsible for IP

addresses, only it can notify the DNS server to update the PTR record mapping the IP address to the

domain name. Our system enables two improvements to this process. Since the DHCP server has a

certificate, the DNS server is now provided with a way to authenticate the updates requested by the

DHCP server if desired. If the responsibility for notifying the DNS server of the updates is left to the
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client, it can sent its certificate to the DNS server along with the update. The certificate is evidence

of the mapping, therefore proving to the DNS server that the requested mapping is correct. Since

the DNS server now knows the mapping is legitimate, it can update both the A and PTR records

from the client request instead of just the A record.

9.5.6 Securing Intra-domain Routing

By eliminating MAC and IP address spoofing within a domain, and by providing certificates for

routers to perform mutual authentication, our approach allows routers to ensure that messages are

not forged. In [52], the authors discuss how routing can be secured using a self-signed certificate

model that evolves into a global public key infrastructure. In this work, we use keys signed by the

domain root of trust. However, our approach also allows the incremental evolution of a public key

infrastructure.

9.6 Distributing Keys for a Domain

Many security proposals suggest or rely upon a global public key infrastructure to distribute public

keys and to construct chains of trust. Unfortunately, efforts to deploy a public key infrastructure

have languished, so reliance upon such an infrastructure is impractical. Instead, we design our

protocol to function independently, but also embrace a public key infrastructure should one become

available. Accordingly, we describe various ways in which a domain can procure a (public, private)

key pair.

9.6.1 Independent Operation

Our approach is designed to be successful without requiring a public key infrastructure. We discuss

two different approaches in which clients can learn the public key of the domain.

In SSH, upon encountering an unrecognized public key, the user is asked to verify the key

fingerprint. Upon doing so, the public key is retained as trusted for all subsequent communication.

To verify the fingerprint, the user may receive documentation from their network administrator and

compare the documented fingerprint with the value they receive. In other cases, the users may

simply take a “leap of faith” and trust the public key without verification, which protects the users

from subsequent man-in-the-middle attacks as long as the initial connection was authentic.

While the leap-of-faith approach is problematic in the case of SSH because it needs to be done

for each individual machine, we can leverage it to bootstrap clients with domain’s public key in an

automated manner. The reason this is a reasonable approach for us to consider this approach is
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because there is exactly one key in question for the entire domain. Accordingly, the user would need

to verify only a single fingerprint rather than a key for each machine. By reducing the verification

overhead, more users may be encouraged to manually verify the key fingerprint. Users often must

perform some security configuration upon first entering a network, such as registering a MAC address

or configuring their machine for wireless security. Accordingly, this simple verification is unlikely to

pose a significant barrier to usage.

Another approach is to simply pre-provision machines with the public key for the domain. En-

terprises often create a customized disk image for the operating system and applications they use

and apply it to all new machines. Other organizations or ISPs may distribute CDs that configure

machines for the network; such CDs could install the domain key onto the target machine. Because

public key cryptography is being used, rather than symmetric keys, identical information can be

widely distributed, easing administrative overheads. By installing the domain key, administrators

can ensure all their machines can automatically verify legitimate machines on the domain without

requiring human intervention.

9.6.2 Certificate Authorities as Trust Anchors

In the SSL protocol, certificate authorities (CAs) are used to authenticate systems. Upon encounter-

ing a site employing SSL, the browser examines the certificate offered by the server. If the certificate

is signed by a trusted root CA, it is considered valid and communication can proceed. Certificates

may also be members of a certificate chain, in which certificates are linked together in signing re-

lationships. To verify a member of the certificate chain, the client must obtain all the certificates

preceeding it on the chain and verify the signatures in turn. In our protocol, we can leverage a

similar approach for verifying a domain. If a domain were to obtain a certificate designated for

domain-wide trust from a CA, it could provide this certificate to authenticate itself to any client

that trusts the same CA. This would allow a client to automatically establish a trust relationship.

While certificate authorities have their own limitations, this approach has been widely successful on

the Internet.

9.6.3 DNS Security for Key Distribution

The DNS provides a distributed database for the Internet, allowing the translation of host names

to IP addresses. DNSSEC [11] can be used to provide authenticated information in the DNS. While

the deployment of DNSSEC is currently low, if it were well deployed, DNS could be leveraged to

distribute certificates [63] in domains using DNSSEC, based on trust of well known entities such as

the TLDs or the DNS root. A client can use DNSSEC in order to establish the certificate chain

to trust information contained in the domain’s DNS records, including certificates stored in a DNS

record. This would allow the client to learn the DNS record in an automated manner through DNS.
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9.7 Revocation of Certificates

Revocation is an important aspect that must be considered in order to ensure that the rights of

misbehaving legitimate entities in a network can be terminated. One approach to accomplish this

goal is to filter traffic to a machine that has become unauthorized or simply disconnect it from the

network. Other options exist, which we discuss next.

Several mechanisms are in place to revoke certificates in the inter-domain scenarios, such as

in the case of SSL. Certificate revocation is a major concern in such protocols. If the private

key associated with a certificate is compromised by an attacker, the certificate must be marked

as invalid to prevent the attacker from impersonating the victim. SSL, a popular certificate-based

security protocol, can use two different approaches to revoke certificates: a certificate revocation list

(CRL) [30] or the Online Certificate Status Protocol (OCSP) [82]. In CRLs, the certificate authority

publishes a signed list of revoked certificates and clients must check this list each time they encounter

a certificate to ensure that the current certificate has not been revoked. The OCSP protocol allows

hosts to verify the status of a certificate on-demand to ensure its validity. These approaches may

incur high processing and bandwidth overhead at the certificate authority, limiting scalability. As a

result, certificate revocation checking is not enabled by default in most popular Web browsers.

A revocation mechanism similar to that used in the inter-domain setting can be used for intra-

domain, only more efficiently. Intra-domain certificate revocation has several advantages over inter-

domain revocation. First, local area networks typically have centralized administration which is

trusted both to issue certificates to domain members and the authority to decide when they must

be revoked. Second, members of the domain are often co-located on high bandwidth links. This

allows clients to routinely query for revocation lists, due to greater capacity, lower latency, and since

revocation servers are more likely to be available. As a result, clients can routinely obtain CRLs

or issue OCSP queries for the hosts they contact. The frequency with which the client caches are

updated can be configured on a per-domain basis and this setting distributed with other DHCP

information. This allows domains to balance rapid revocation with network overheads.

Other Uses of Revocation: While certificate revocation is traditionally used when a public key

is compromised, revocation could also be issued if member of the domain should have privileges

rescinded immediately. However, revocation is not required when additional privileges are granted.

Instead, a machine receiving additional privileges can simply request a new certificate indicating

this before the old one expires. This usage of revocation allows a domain to effect access control in

addition to authenticating machines.

Revocation of Domain Key: While certificate revocation is straight-forward for entities belonging

to the domain, it is much more challenging for the domain key. Were the domain key compromised,

a revocation self-signed by the domain key must be issued, invalidating the key on a domain-wide

basis. A new domain key would then need to be established using one of the methods described in
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Section 9.6. Like certificate authorities in the Internet, organizations would have significant incentive

to avoid such a scenario. Accordingly, the domain key would likely be tightly secured and only used

to issue certificates for infrastructure components, such as the DHCP server, limiting exposure.

9.8 Implementation and Evaluation

To evaluate our proposed scheme, we implemented the modified ARP and DHCP protocols and

then experimentally analyzed their performance based on the usage of these protocols on a medium

and large network. We focused on these two because these are the only cases where we introduce

new overheads to the protocols. In the remainder of the intra-domain protocols discussed in this

paper, there is already support to incorporate the certificate-related mechanisms; we have merely

facilitated their usage in a seamless way.

All of the performance trials were conducted on a machine with a Pentium IV 1.8 GHz processor

with 512MBytes RAM. To measure the timings, we use the RDTSC instruction, which can be used

to measure the elapsed cycle count, yielding nanosecond timing resolution.

9.8.1 DHCP

DHCP is implemented as an option for BOOTP, which was designed to allow hosts to obtain IP

addresses automatically [35]. To evaluate our changes to the DHCP protocol, we implemented the

entire protocol and timed each of the cryptographic operations. We created our DHCP packets

by populating the standard DHCP packet header and adding DHCP options for each of the new

fields that need to be transmitted in the packets under our version of the protocol. In total, we

implemented seven new option types allowed by RFC 2131 [35] as “reserved for local use”. These

options allowed the specification of a client public key, client and server nonce values, a signature of

the DHCP message, certificates for the DHCP client and server, and supporting certificates required

to verify the client and server certificates.

To implement the cryptographic components in the messages, we used the Botan cryptographic

library for C++ [73]. This library provides an extensive set of functions allowing us to create

certificates, generate public keys, sign and verify messages, and implement a certificate authority.

In creating our experiments, we generated an RSA (public, private) key pair and root certifi-

cate for the example.com domain. We then created another RSA key pair and certificate for the

dhcp.example.com DHCP server, and signed this certificate with the domain root key. For each

DHCP client, we generated a DSA key pair. We chose DSA instead of RSA for the clients because

of its faster signing and verification operations. We chose to use RSA for the domain and DHCP

server keys due to their smaller certificates, as these must be included in the certificate chains for

each DHCP offer message.
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DHCP Required
Operation Message Machine Time (ms)
Generate Client Key Pair N/A Client 145.003
Create Nonce All but Ack. Both 0.032
Create Signature Request Client 9.428
Verify Message Signature Request Server 16.163
Create Signature Offer Server 15.618
Verify DHCP Server Certificate Offer Client 14.412
Verify Message Signature Offer Client 0.900
Create Certificate Ack. Server 71.038
Create Signature Ack. Server 15.641
Verify Client Certificate Ack. Client 19.823

Table 9.1: Cryptographic operations in our DHCP protocol

Through the modified DHCP protocol, the DHCP client would provide the server with its DSA

public key. The DHCP server would generate a certificate for the client from this public key, and

sign the certificate with its RSA private key. These operations work in lock-step and hence can be

run on the same machine. We measured the cryptographic overheads and the message size overheads

for both entities.

Overheads of Cryptographic Operations: In Table 9.1, we present the cryptographic operations

present in the modified DHCP protocol. We list the operations in order of their execution in

the protocol. With each operation, we include the machine performing the operation and the

DHCP message associated with the operation. For each message they send, except the DHCP

acknowledgment message, the client and server are each required to create a nonce. For readability,

we only list this overhead once. From these results, we see the most significant overhead is associated

with the generation of a DSA key pair on the client before beginning the DHCP protocol. The client

may generate a DSA key pair and reuse it for each DHCP protocol in order to amortize the overhead.

The next most significant overhead, the creation of the client’s certificate, is executed in the last

message generated by the server. Before generating the certificate, the client has proven liveness

by responding to a nonce and signing the message. Therefore, the DHCP server is afforded some

protection against spoofed DoS attack attempts.

To determine whether these overheads are acceptable, we examine two network deployments:

a smaller, largely static network with about 570 hosts and a larger, dynamic network with about

111, 500 hosts registered. The smaller network has a single DHCP server with 100 IP addresses in

its pool with 55 in use at the time measured. The server used a lease time of 24 hours. During a

24 hour period, the server received 1, 027 DHCP messages, an average of roughly 1 request every

1.4 minutes. The cryptographic overheads are unlikely to be detrimental to this DHCP server’s

operation. The larger network has two DHCP servers with two different lease times: 8 hours for

wired connections and 2 hours for wireless connections. During one day of operation, these servers

received 271, 324 new lease requests and 215, 640 renewal requests. Accordingly, the two DHCP

servers received an average of 20, 290 requests per hour. If this load were divided evenly, the servers
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processed about 2.82 requests per second. The cryptographic overheads at the server on our test

machine were about 119ms per client request. If only these overheads are considered, the servers

could process 8.44 requests per second from cryptographic perspective, even without exploiting any

parallelism. We note that even though our test server is quite modest, it could easily accommodate

the requirements of this large network. Accordingly, we believe our proposed solution is feasible for

both these networks.

Message Sizes: While evaluating our implementation, we examined the size of each message in

the modified DHCP protocol. The DHCP discovery and request messages easily fit within a single

Ethernet frame, requiring 955 and 1, 025 bytes respectively. Unfortunately, the DHCP offer and

acknowledgments, which require 2, 313 and 1, 866 bytes respectively, exceed the standard 1, 500 byte

MTU for Ethernet. While some networks may use jumbo frames [58], which can easily hold these

messages, others will require the packets to be split into two frames. Fortunately, this fragmentation

does not increase the number of round-trips in the protocol, causing the protocol to be largely

unaffected by these larger messages.

9.8.2 ARP

The operations required in the modified ARP protocol are a proper subset of the functionality in

the modified DHCP protocol. Accordingly, we examine the cryptographic overheads and evaluate

whether they are feasible in large networks.

Cryptographic Operation Overheads: Hosts issuing ARP requests have no extra overheads

when creating the request. However, they must verify the certificates in any requests they receive,

an operation which takes approximately 19.8ms on our test machine, as shown in Table 9.1. Hosts

responding to ARP requests must provide their own certificates in addition to the ARP reply header.

This operation requires no cryptographic overhead. Hosts responding to ARP requests containing

nonce values must also generate a signature over the message, which takes 9.4ms on our test machine.

Both of these overheads seem acceptable for hosts, which typically issue ARP requests or replies

relatively infrequently.

These overheads become more acute for routers and Ethernet switches. We again turn to our

example network deployments to determine the feasibility of processing these ARP messages. The

smaller network is serviced by four Ethernet switches with a link to an external router. The ARP

cache expiration timer on these switches was approximately 5 minutes. We monitored the ARP churn

on one of these switches for a five minute window and found that 50 cached entries were removed

while 42 were added. The switches would only perform challenges on new cache entries in order to

ensure the mappings were valid. Accordingly, these switches would need to generate an ARP request,

a nonce value, verify a certificate, and verify a signature once every 7.14 seconds. Combined, the

cryptographic operations took 36ms on our test machine. We find that these overheads are acceptable
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for this network. Our larger example network has 5 routers, with the busiest router peaking at about

21, 000 ARP cache entries. At peak times, a few thousand of ARP cache entries are added per hour.

We conservatively estimate a peak addition rate of half of the observed cache size, or 10, 500 entries

per hour, or approximately 3 per second. These routers must issue ARP queries for each of these

hosts and verify the certificates in the replies, an operation that takes 19.8ms on our test machine.

Accordingly, excluding non-cryptographic overheads, the router could issue and verify 50.45 requests

per second. Since the rate possible is an order of magnitude greater than the estimated peak rate, we

believe the router can accommodate this overhead. Routers, like hosts, must reply to ARP requests

from hosts. The router must reply to these requests as they do today, but also provide their own

certificate. However, this operation requires no cryptographic overheads. The router is unlikely to

leave the ARP cache of the switches connected to it; however, if this happens, the overhead would

be only 9.4ms, the time required to generate a signature, once per ARP cache expiration. We find

these overheads to be acceptable for these networks.

Message Sizes: As with DHCP, we examined the packet size of ARP requests and replies. A

regular host ARP request is just 28 bytes, the size of the ARP header. For ARP requests with

a nonce challenge, the request is 32 bytes, the size of the ARP header and a 4 byte nonce value.

ARP replies with a certificate are 1, 395 bytes in size. Each of these messages fits inside a regular

Ethernet frame. However, ARP replies with a certificate, nonce, and a signature are 1, 572 bytes

in size, exceeding the limit of an Ethernet frame. As indicated in the DHCP analysis, networks

employing jumbo frames can accommodate these larger packets without difficulty. However, for

other Ethernet networks, the message must be sent in two frames. Fortunately, this does not require

a round-trip, limiting the added overheads.

9.9 Conclusion

In this work, we introduced and evaluated a unified framework for authenticating and authorizing

machines within a domain. Our solution leverages public key operations in order to provide these

guarantees. While public key operations are considered high overhead, we evaluated the secure

versions DHCP and ARP protocols and found the performance is viable in both small and large-

scale networks. Several other issues are important to consider. We discuss them next.

Incrementally Deployable Public Key Infrastructure: While our protocol is designed to allow

an organization to independently deploy the approach, several deploying organizations can use this

infrastructure to create an inter-domain security scheme. Such a grass-roots approach to creating

a public key infrastructure has been suggested in other works [52]. By allowing networks to deploy

the approach independently and by providing local incentives, the approach can obtain greater

adoption. With this adoption, collaborating networks can then begin to use the protocol for inter-

domain communication. With larger deployment, a formal top-down hierarchy can begin to replace
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the grassroots approach. Accordingly, this approach moves closer to being a unified mechanism for

authenticating hosts across the Internet.

Malicious Intra-domain Clients: There is always a possibility of malicious intra-domain clients

attempting to attack the architecture itself. Intra-domain DoS attacks, for example, could be

launched by clients attempting to overwhelm other clients or the DHCP server. However, clients are

isolated until they have authenticated with the DHCP server, protecting the rest of the network.

Once they have authenticated, if they launch an attack, these clients can simply be ignored by the

victim machines, since the clients will be unable to spoof their addresses. Attackers may target

the DHCP server, since it is required to create and sign a certificate, a cryptographically intense

operation. However, this certificate signing does not happen until after the client has proven liveness

by replying to a nonce value, limiting the ability of the client to spoof attacks. Further, Ethernet

switches can easily rate-limit the number of DHCP and ARP requests issued by a client, limiting

the attack’s success.

Compatibility with IPv6: While we have largely focused on the behavior of an IPv4 network

throughout this paper, our approach is compatible with IPv6 as well. When used with a DHCP

server in IPv6, certificates are issued much as they are in IPv4. However, the IPv6 protocol does

not use the ARP protocol. Instead, neighbor discovery is used. This protocol can be modified in

a similar fashion as the ARP protocol in order to provide cryptographic bindings as well. While

IPv6 can be used for stateless auto-configuration, such configuration runs contrary to the desire for

registering or authenticating with a centralized device. Accordingly, auto-configuration is unlikely

to be deployed in a network where heightened security is a goal.
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Conclusion

The Internet is an important component of computing and of society as a whole. With its phe-

nomenal growth, the Internet has become stressed in terms of address space and routing scalability.

Further, it is tied to a single addressing scheme, raising the costs associated with change. However,

these problems are not intractable.

10.1 Summary of Contributions

In this dissertation, we explored a way forward: we eliminated IP addresses in the Internet and

replaced them with a system that has better performance, routing scalability, and embraces evolution

of host addressing. In our system, we embraced a split between routing locators and host identifiers

and used ASNs to forward packets. ASNs yield smaller routing tables, faster packet forwarding, and

can be used independent of the host addressing scheme. To perform intra-domain packet forwarding

and to identify hosts, we used DNS host names. Host names are already widely used by Internet

users and using them directly allowed us to reduce the requirements on the DNS while solving the

address space exhaustion problem in IPv4. However, other host addressing schemes can be designed

and ASN-based routing will still provide routing scalability.

Host names also allow us to create a unified authentication architecture to solve intra-domain

security problems that have previously been addressed in only a piecemeal fashion. We tie host

names to cryptographic certificates, allowing hosts to provide strong evidence of their authenticity.

In creating our architecture, we analyzed each component using large-scale, real Internet mea-

surements, software implementations of forwarding algorithms, and comparisons with existing ap-

proaches. From this, we have confirmed that the architecture will eliminate key concerns, including

address exhaustion and routing scalability, for decades to come.

102
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10.2 Stakeholders in New Internet Architectures

When proposing a new architecture, one must consider how it will impact each of the stakeholders

on the Internet. These stakeholders each have different concerns and motivations. To have the

architecture deployed, we must coordinate each of these stakeholders. Below, we discuss each of these

stakeholders, what role they would play, and the mechanisms that may encourage their participation.

• Router Manufacturers: Routers must handle packet forwarding and coordinate routing

information. Many routers perform forwarding in custom hardware to expedite processing.

With a transition from IPv4 to ASNs and host names, they would need to update this hardware

in new routers. ASN forwarding tables have simple designs and use less expensive hardware,

allowing cost savings compared to IPv4. The routers would additionally need to be able to

handle name-based forwarding for intra-domain packets, which would require more memory,

but could be processed using slower memory due to decreased demands in edge networks.

Routing protocols would also have to change to support ASNs and domain. However, these

changes can be implemented in the software at routers for little added expense.

Router manufacturers have a strong motivation for participating. To build IPv4 or IPv6 for-

warding tables, they require high capacity fast memory. Unfortunately, this memory is expen-

sive, consumes significant electricity, and comes in limited capacities. With ASN forwarding

tables, the data structures would be smaller and would grow slower, reducing the memory

requirements at routers and yielding significant savings. These routers will be cheaper to

construct and own, making them easier to sell and market.

• Internet Service Providers: ISPs can be divided into two groups: transit and edge ISPs.

Transit ISPs provide connectivity for other networks and typically have high traffic volume and

must have routers that can forward packets quickly. Using ASNs, these ISPs can forward more

packets in a given amount of time than is possible today. Further, due to the slower growth of

ASNs, these providers do not have to worry about router capacity being overwhelmed soon.

Forwarding on ASNs offers significant cost savings to these transit ISPs. Edge ISPs, which

provide direct connectivity for customers, have lower traffic volumes but have high numbers of

customers. These ISPs must be able to provide a unique address for each of their customers.

With name-based identifiers, these ISPs have little concern for address exhaustion.

• Operating System Vendors: To support ASN locators or name-based identifiers at end-

hosts, the network stack must be modified. Operating system vendors tend to support new

networking protocols early in their deployment. For example, IPv6 is deployed in most modern

operating systems. Operating system vendors are likely to support our proposed functionality

because of the greater flexibility for their users, leading to greater marketability. These vendors

can can implement this support through patches to the kernel.



10. Conclusion 104

• Governments: With the increased role of the Internet in society, governments have rec-

ognized the need to provide connectivity to their citizens. The address space crisis of IPv4

threatens to undermine this mission. However, with name-based identifiers, these concerns can

be eliminated. While the government may not play a direct role in deploying the architecture,

they can encourage deployment through their own contracts or economic incentives.

• End-Users: Without users, the Internet would not serve a purpose. These users must be

able to use the Internet but need not be able to understand the mechanisms involved. By

using host names as identifiers, we can switch from IPv4 to name-based routing in a way that

is transparent to most users. By switching to name-based routing, we allow more users to

connect their machines to the Internet. This directly benefits the Internet as a whole.

10.3 Concluding Remarks

The Internet community often laments our inability to fix problems in the Internet given its size and

the expense of updates. The slow deployment of DNSSEC and IPv6 may cause researchers to believe

that we are incapable of sweeping overhauls. However, such comparisons gloss over an important

concern: incentives. A new protocol must provide sufficient incentive to compel organizations to

adopt the protocol. While IPv6 and DNSSEC provide tangible global benefits to the Internet, they

offer little incentives for organizations whose needs are met by the existing systems.

In our architecture, we have focused on providing a scheme that provides direct incentives for

adopters: packet forwarding on ASNs is faster and results in smaller forwarding tables that can be

stored in high-speed memory cheaply. These provide motivation for adoption in large providers in ad-

dition to providing global benefits. We further provide a partial deployment and staged deployment

plan describing how organizations can move from the current IPv4 scheme into our new architec-

ture. In completing this work, we hope that our metrics and results can guide future researchers

and developers in creating and evaluating their work in new Internet architectures.
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