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APPARATUS AND METHOD FOR
EPILEPTIC SEIZURE DETECTION USING
NON-LINEAR TECHNIQUES

The United States Government has rights in this inven-
tion pursuant to contract no. DE-AC05-840R21400
between the United States Department of Energy and Lock-
heed Martin Energy Systems, Inc.

FIELD OF THE INVENTION

The present invention relates to the application of chaotic
time series analysis (CTSA) to electroencephalogram (EEG)
data and magnetoencephalogram (MEG) data, and more
particularly to the analysis of the data to detect epileptic
seizures.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This invention is related to U.S. application Ser. No.
08/619,030 Epileptic Seizure Prediction by Nonlinear Meth-
ods by Lee M. Hively, Ned E. Clapp, C. Stuart Daw, and
William F. Lawkins and to U.S. application Ser. No. 08/619,
031 Method and Apparatas for Extraction of Low-
Frequency Artifacts from Brain Waves for Alertness Detec-
tion by Ned E. Clapp and Lee M. Hively, both of which are
filed on even date herewith, and both of which are assigned
to the same entity.

BACKGROUND OF THE INVENTION

The theory of nonlinear dynamics provides a basis for
understanding and potentially controlling many complex
physical and engineering systems. An extensive literature
exists for nonlinear dynamics in the brain and related work
(18). It is well known that brain waves exhibit seemingly
random, unpredictable behavior, that is characteristic of
deterministic chaos (1, 20). Moreover, chaotic behavior is
“normal,” while nonchaotic or periodic behavior is indica-
tive of pathophysiology in experimental epilepsy (20).
Schiff et al. (11 ) showed that chemically-induced seizures

10

15

20

25

30

35

in rat-brain can be electrically controlled, leading to specu- -

lation (4) that human epilepsy may be controlled without
drug or surgical intervention. However, effective use of
chaos control for epilepsy requires definitive seizure detec-
tion. Thus, this invention diagnoses brain wave data via
chaotic time series analysis (CTSA) methods to detect an
epileptic seizure.

Nonlinear analysis of neurological diseases via EEG data
is extensive. For example, see the 1994 review by Elbert et
al. (18). Epilepsy can be recognized only with clear EEG
manifestations, but even these seizures are not easy to detect
because there is no stereotyped pattern characteristic of all
seizures (5). Work by Olsen and colleagues (7) used various
linear measures with autoregressive modeling, discriminant
analysis, clustering, and artificial neural networks. Valuable
nonlinear tools for studying EEG data include correlation
dimension, mutual information function, Kolmogorov
entropy, phase-space attractors, and largest Lyapunov expo-
nent.

Very recent analysis by Theiler (16) studied correlation
dimension and Lyapunov exponent, using a form of surro-
gate analysis on a single EEG time series during an epileptic
seizure. The surrogate analysis involved a random shuffling
of blocks of time serial data, each block containing one
quasi-periodic spike-wave complex. The auto-correlation
function for the original data is nearly indistinguishable

45
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65

2

from the surrogate data. The correlation dimension for the
original data is significantly different from the surrogate data
only at large scale sizes and large embedding dimensions.
The maximum Lyapunov exponent (A) was negative for both
the original and surrogate data and not substantially
different, contrary to previous work which found positive A
values. Theiler concluded that his analysis suggests a non-
linear oscillator with noise on the time scale of the spike-
wave complex, but cannot indicate whether chaos exists on
a shorter time scale.

Other patents for epileptic seizure detection have been
granted. U.S. Pat. No. 5,311,876 “Automatic Detection of
Seizures Using Electroencephalograpic Signals” by D. E.
Olson et al. relies on linear analysis of EEG features for
seizure detection. U.S. Pat. No. 5,349,962 “Method and
Apparatus for Detecting Epileptic Seizures” by J. S. Lockard
et al. detects seizures if the wavefom is within a predeter-
mined threshold. These patents use linear methods, as dis-
tinguished from the- nonlinear techniques of the present
invention. No- other work is known that applies several
CTSA measures to EEG data or MEG data for systematic
characterization of non-seizure, seizure, and transition-to-
seizure.
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OBJECTS OF THE INVENTION

Accordingly, it is an object of the present invention to
provide new and improved methods and apparatus for
detecting epileptic seizures in a patient and providing noti-
fication to permit assistance to be given to the patient or to
a person who can assist the patient.

Further and other objects of the present invention will
become apparent from the description contained herein.

SUMMARY OF THE INVENTION

In accordance with one aspect of the present invention,
the foregoing and other objects are achieved by a method for
automatically detecting an epileptic seizure in a patient
comprising the steps of: providing at least one channel of a
patient’s raw brain wave data, called e-data, selected from
the group consisting of electroencephalogram data and mag-
netoencephalogram data; separating the e-data into artifact
data, called f-data, and artifact-free data, called g-data, while
preventing phase distortions in the data; processing g-data
through a low-pass filter to produce a low-pass-filtered
version of g-data, called h-data; applying at least one non-
linear measure selected from the group consisting of time
steps per cycle, Kolmogorov entropy, first minimum in the
mutual information function, and correlation dimension to at
least one type of data selected from the group consisting of
e-data, f-data, g-data, and h-data to provide at least one time
serial sequence of nonlinear measures, from which at least
one indicative trend selected from the group consisting of
abrupt increases and abrupt decreases can be determined;
comparing at least one indicative trend with at least one
known seizure indicator; and determining from said com-
parison whether an epileptic seizure is occurring in the
patient.

In accordance with a second aspect of the present
invention, the foregoing and other objects are achieved by
apparatus for automatically detecting an epileptic seizure in
a patient comprising: data provision means for providing at
least one channel of a patient’s raw brain wave data called
e-data selected from the group consisting of electroencepha-
logram data and magnetoencephalogram data; separation
means for separating e-data into artifact data, called f-data,
and artifact-free data, called g-data, while preventing phase
distortions in the data, communicably connected to the data
provision means; low-pass filter means for filtering g-data to
produce a low-pass filtered version of g-data, called h-data,
communicably connected to the separation means; applica-
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tion means for applying at least one nonlinear measure
selected from the group consisting of time steps per cycle,
Kolmogorov entropy, first minimum in the mutual informa-
tion function, and correlation dimension to at least one type
of data selected from the group consisting of e-data, f-data,
g-data, and h-data to provide at least one time serial
sequence of nonlinear measures, from which at least one
indicative trend selected from the group consisting of abrupt
increases and abrupt decreases can be determined, commu-
nicably connected to the low-pass filter means; comparison
means for comparing at least one indicative trend with
known seizure indicators, communicably connected to the
application means; and determination means for determin-
ing from the comparison whether an epileptic seizure is
occurring in the patient, communicably connected to the
comparison means.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 is a block diagram showing how, in accordance
with the present invention, EEG data is obtained from the
patient, digitized, processed, and analyzed by nonlinear
methods to detect and/or predict epileptic seizures.

FIG. 2 shows standard EEG electrode positions on a
patient’s scalp for the bipolar montage, looking from above.

FIG. 3 shows sample plots of EEG data, to illustrate raw
data (e-data as the dotted curve in FIG. 3a), and artifact-
filtered data (g-data, shown in FIG. 3b), as an example of the
method and apparatus of this invention.

FIGS. 4, 5, 6, and 7 show linear and nonlinear measures
of time serial data for Example I. FIG. 4 shows linear and
nonlinear measures of raw (e-data);FIG. 5 shows linear and
nonlinear measures of artifact (f-data); FIG. 6 shows linear
and nonlinear measures of artifact-filtered (g-data); and FIG.
7 shows linear and nonlinear measures of artifact- and
low-pass filtered (h-data). Various mathematical properties
and characteristics are shown for each data type, and are
further shown in parts (a), (b), (), (d), (e), (), (g), (h), and
(i) for each data type.

These measures are shown as curves, each curve repre-
senting a time serial sequence of linear or nonlinear mea-
sures. Within each curve, significant features such as abrupt
increases and abrupt decreases may be viewed as indicative
trends which are then compared to trends which have been
shown to be seizure indicators. Thus from the comparison it
can be determined whether a seizure is occurring in the
patient. In parts (a), (b), (c), (d), and (e) for each data type,
the solid line is the specific measure, the dashed line is the
11-point average, and the dotted line is the standard devia-
tion for the measure.

FIGS. 8, 9, 10, and 11 show linear and nonlinear measures
of time serial data for Example IT. FIG. 8 shows linear and
nonlinear measures of raw (e-data); FIG. 9 shows linear and
nonlinear measures of artifact EEG (f-data); FIG. 10 shows
linear and nonlinear measures of artifact-filtered (g-data);
and FIG. 11 show linear and nonlinear measures of artifact-
and low-pass filtered (h-data). Various mathematical prop-
erties and characteristics as computed for each data type are
further shown in parts (a), (b), (¢), (d), (e), (). (g), (h), and
(i) for each data type. These measures are shown as curves,
each curve representing a time serial sequence of linear or
ponlinear measures. Within each curve, significant features
such as abrupt increases and abrupt decreases may be
viewed as indicative trénds which are then compared to to
trends which have been shown to be seizure indicators. Thus
from the comparison it can be determined whether a seizure
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is occurring in the patient. In parts (a), (b), (c), (d), and (e)
for each data type, the solid line is the specific measure, the
dashed line is the 11-point average, and the dotted line is the
standard deviation for the measure.

For a better trader standing of the present invention,
together with other and further objects, advantages and
capabilities thereof, reference is made to the following
disclosure and appended claims in connection with the
above-described drawings.

DETAILED DESCRIPTION OF THE
INVENTION

Chaotic time series analysis (CTSA) is applied to human
electroencephalogram (EEG) data. )

For reference, equation numbers are shown at the right of
each equation.

Three epochs were examined: epileptic seizure, non-
seizure, and transition from non-seizure to seizure. The
CTSA tools were applied to four forms of these data: raw
EEG data (e-data), artifact data (f-data) via application of a
quadratic zero-phase filter of the raw data, artifact-filtered
data (g-data) that was the residual after subtracting f-data
from e-data, and a low-pass-filtered version (h-data) of
g-data. Several nonlinear measures uniquely indicate an
epileptic seizure, including: an abrupt increase in the num-
ber of time steps per cycle for f-data; an abrupt increase in
the number of timesteps per cycle for g-data; an abrupt
increase in the number of timesteps per cycle for h-data; an
abrupt increase in the entropy of e-data; an abrupt increase
in the entropy of f-data; an abrupt increase in the entropy of
g-data; an abrupt increase in the entropy of h-data; an abrupt
decrease in the first minimum in the mutual information
function for f-data; an abrupt decrease in the first minimum
in the mutual information function for h-data; an abrupt
increase in the correlation dimension of e-data; an abrupt
increase in the correlation dimension of f-data; an abrupt
increase in the correlation dimension of g-data; an abrupt
increase in the correlation dimension of h-data; and combi-
nations thereof. Analysis of e-data shows that statistically
significant nonlirear structure is present during the non-
seizure, transition, and seizure epochs.

Two sets of channel-13 EEG data from one patient are
provided as examples. In FIG. 1 of the drawings, 11 shows
the patient’s head, looking from above. 13 shows EEG
electrode positions on the patient’s scalp. 15 shows a non-
linear measure of EEG data. In FIG. 2 of the drawings, C13
labels the position where the channel 13 data, which is used
in this work, originates. Analysis of C13 data was chosen for
these examples to demonstrate the robust removal of eye-
blink artifact, which otherwise dominates channel 13
because of its proximity to the eye. This method and
apparatus can be applied to data from other EEG channels,
as well as to MEG data, as is apparent to those skilled in the
art. Both sets of data included non-seizure, transition-to-
seizure, and epileptic seizure data. The analysis included
various linear measures (standard deviation, absolute aver-
age deviation, skewedness, kurtosis), plus nonlinear mea-
sures (time steps per cycle, Kolmogorov entropy, first mini-
mum in the mutual information function, and correlation
dimension). Four forms of the data were analyzed: raw EEG
(e) data, artifact (f) data via application of a zero-phase
quadratic filter, artifact-filtered (g) data that was the residual
after subtracting f-data from g-data, and a low-pass-filtered
version (h) of the g-data. The nonlinear measures clearly
discerned the epileptic seizures in these examples, while
none of the linear measures provided definitive seizure
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indication. Nonlinear tools identified seizure indicators with
and without artifact removal, with and without low-pass
filtering, demonstrating the robustness of these methods to
noise and artifacts. Surrogate analysis of e-data showed that
this data has significant nonlinear structure.

In the examples described herein, sixteen channels of
EEG data were analyzed in the bipolar montage, as illus-
trated in FIG. 2. The data were retrieved in analog form from
VHS tapes and converted to digital form with 12-bit
precision, giving an integer between —2048 and +2047. The
digital sampling rate (f;) was 512 Hz over a total sample
time of 10-23 minutes, corresponding to a total dataset size
of 9.8-22.5 megabytes in binary form. Three epochs of data
were examined: epileptic seizure and post-seizure, non-
seizure, and transition from non-seizure state to seizure
(transition).

It is acknowledged that to detect an epileptic seizure as it
occurs, the brain wave data used would not be recorded data,
but would be currently-occurring data. This data would be
taken from the patient to the apparatus directly using stan-
dard EEG or MEG methods, or indirectly by transmitting the
data to an apparatus remote from the patient by means such
as telephone, radio, or other communications means well
known to the skilled artisan.

Raw brain wave data contains not only signals associated
with brain activity, but also contains artifacts (e.g., eye
blinks, muscle twitches, chewing, etc.) that obscure the
brain-wave signal. In order to observe artifact-free data and
artifact data independently, the raw data must be separated
into artifact data and artifact-free data. A zero-phase filter
was developed and used to remove low-frequency artifacts,
based on the following criterion. A zero-phase-shift filter
was needed to prevent phase distortions when subtracting
the filter output (the “artifact” data signal) from the raw data
signal to yield an undistorted artifact-filtered or artifact-free
data signal, because phase relationships are most important
in the subsequent nonlinear analysis. Standard high-pass
filter techniques do not meet this criterion. A computation-

- ally fast, simple, low-frequency signal follower was neces-

sary to eventually apply the filter in real- or near-real time.
Consequently, quadratic regression analysis was used, with
the same number of data samples on either side of a central
point. Other standard digital filtering methods (15) could not
meet this requirement.

The zero-phase filter method and apparatus which may be
embodied in various ways well known to one skilled in the
art, such as a specially-programmed computer or a pro-
grammed integrated circuit, semi-conductor chip, or micro-
processor, is as follows. For a specific chamnel, the EEG
signal (e) at time (t) is sampled at regular intervals (t=i At)
to yield a set of time serial data e=e(t;). We choose a
filter-window length of 2n+1 points from the time series,
where n is the number of points on either side of the central
point (e,) as indicated in the sequence below.

central point
|

Eomy Comtls - - - 2 €0y Cctly - - -
“ 7 N

> €otn-1s €otn
"

n points n points

The data was fitted to a quadratic equation that takes the
form: F=F(t)=a,(t—t,) *+a (t~t }+a=a T *+a,T+a, Here,
t=c At is the time at the central point, and T =t,~t.. This
approximation is fitted to the data, by minimizing the sum of
squares of the differences between the quadratic equation,
F(t), and the raw EEG data, e(f), comresponding to the
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minimum in the following function:

Eq. 1

cin n
L= % [Fty-et)P= X [(aT?+aTi+a3)— el
=cn 1=-n

The minimum in L is found from the condition dL/da=0,
for k={1, 2, 3}, forming three simultaneous linear equations
in three unknowns. The window-averaged artifact (F) is
given by the fired value of the central point, F =F(0)=a,.
Note that the sums over odd powers of T; are zero and that
symmetric sums over even powers of T; (over i from -n to
+n) can be converted to sums from 1 to n with T=iAt,
yielding a window-averaged solution for the artifact signal:

3(3n2 + 3n ~ 1) €ive) — 15 Peine) Eq.2
(dn2 +4n—3)2n+ 1)

¢

k -=0to 20 seconds - =+ >l

K - =+ 10 to 30 seconds = -+ >|

15

8
(f-data), which clearly follows the low-frequency trends.
FIG. 3b shows the residual signal (g-data) for this example,
as having little low-frequency component while retaining
the higher frequency information.

For a specific EEG channel, a time history of the nonlin-
ear measures was obtained by applying the CTSA tools to a
series of 20-second analysis-windows of the four data types
(e, £, g, h). These data are designated herein as x. The length
of the analysis window (w) was 10,240 points. Each
analysis-window had a 5,120-point overlap with the previ-
ous (or next) analysis-window of data. This 50% overlap
provides an optimal mix of new and old data for smooth
time-history trend generation (2), as illustrated below.

k< -- 20 to 40 seconds ~ = - >

Here, X, indicates the sum over i from —n to +n. Sums over
even powers of “i” were explicitly evaluated with standard
formulae (10). The effort to evaluate F_ can be reduced
substantially by computing the sums initially from Eq.2 (at
c=n+1), and then using the following recursions thereafter:

n n L3
2 eieri =il —€cnt I Eire Eq
=n =-n

n a n Eq. 4
.2 zeMl=ne,4.+1—(n+1)ec_,,+.E le;.k_-—‘z Eite
=n =n i=n

Eq. 5

n
X Peyernn=rlecm—(n+ 1Yecn+
i=n

n n . n
I Reye—2 L iepet I €ine
=n =n

=-n

The right-hand sides of Eqs. 3-5 only involve the sums
previously computed. Application of Eqs. 2—5 to the N-point
set of original time serial EEG data (e;, illustrated as the
dotted curve in FIG. 3a) yields an artifact dataset (f; or
f-data, illustrated as the solid curve in FIG. 3a) with (N—2n)
points that contains the low frequency artifact signal. The
residual signal (g; or g-data, illustrated as the solid curve in
FIG. 3b) is the difference, g=e,—f;, and is a signal that is free
of low-frequency artifacts. Subsequently, the g-data is pro-
cessed through a standard fourth-order low-pass filter at 50
Hz (e.g., see Ref. 9) to yield artifact-filtered, low-pass-
filtered data (h; or h -data) that is free of both low- and
high-frequency artifacts. Note that spike-wave phenomena
at 100 Hz in h-data are attenuated by 28 db (a factor of 25),
while the g-data retain the full spike-wave signals. A stan-
dard second-order, third-order, or fourth order filter at fre-
quencies between about 35 Hz and about 60 Hz would also
be effective as a low-pass filter.

The filter-window length (n=128) corresponds to a fre-
quency of 2.0 Hz [=512 Hz/(2n 1)]. FIG. 3a shows an
example of the application of this method, with (raw) e-data
in light gray and a superimposed (dark line) artifact signal
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I< ==+ 100 to 120 seconds -=-+>|
I< ==+ 110 to 130 seconds --->|

The zero-phase quadratic filter provides artifact-filtered
data with frequencies of 22 Hz. A heuristic for (linear)
Fourier analysis is that 210 periods of data are required to
faithfully recover cyclic information at a specific frequency.
Thus,=5 seconds of data are needed to obtain Fourier
amplitude and phase information at a signal frequency of 2
Hz. However, this heuristic does not apply to nonlinear
analysis. For example, 20 seconds of data are necessary to
obtain consistent results for the Kolmogorov entropy. This
need for longer dataset lengths (~10,000 points) for consis-
tent nonlinear measures conflicts with the need for shorter
dataset lengths (=5,000 points) to provide adequate resolu-
tion for the time history generation of trends. Consequently,
a 20-second analysis window was used, as described above,
with a 50% overlap for an effective time history resolution
of 10 seconds. The nonlinear measures for each 20-second
analysis window were associated with the time at the center
of the analysis window, i.e., every ten seconds. Shorter or
longer analysis window lengths can be used in proportion to
higher or lower data sampling rates, as is obvious to those
skilled in the art.

Many characterization tools exist for chaotic data analy-
sis. A subset of the tools that were found in previous work
to be good measures for EEG data were used in carrying out
the present invention. These tools include the following:
standard statistical measures (minimum, maximum,
average, absolute average deviation, standard deviation,
skewedness, kurtosis, time per cycle); Kolmogorov entropy
and entropy spectrum; mutual information function; maxi-
mum likelihood correlation dimension and correlation
dimension spectrum; surrogate generation and nonlinearity
tests; and nonlinear digital filters (as discussed herein).

Entropy, correlation dimension, and mutual information
were used in the present invention as nonlinear measures for
seizure analysis. The first minimum in the mutual informa-
tion defines the time scale for generating the return map for
EEG dynamics. The return map underlies the correlation
dimension (measure of dynamic complexity) and entropy
(measure of dynamic predictability). We have applied these
same measures successfully in analyzing other systems.
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The statistical measures for the present study are obtained
by standard methods (6). The maximum and minimum are
obtained as maximum and minimum (respectively) over the
X, values in a time-serial window of w points. The average

(%) is given by:
(L) £ Bas
=AW JiE
The r-th order moment (m,) of the x-data is:
Eq.7

(+)&¢
mp=| — X —x)
w Ji=l 9

The absolute average deviation (a) provides a robust indi-
cator of the x, variability (13) and is defined as:

“(#)

An unbiased estimate of the standard deviation (o) is:

|

An estimate for the skewedness (s) is:

w . 8
Z bg—x Ea
i=1 =

wm
w1,

12 Eq.9
]

m3

=—
w2

An estimate for the kurtosis (k) is:

Eq. 10

5

Eq 11

k= -3

my?

The average cycle time (T,) is important as a characteristic
time of the nonlinear system:

window length in timesteps Eq. 12

( number of mean crossings )
2

Te=

The mutual information function (MIF) is a nonlinear
version of the (linear) auto-correlation and cross-correlation
functions, and was developed by Fraser and Swinney (3).
Mutual information measures the certainty with which a
measurement can be predicted, given the outcome of another
related measurement. Examples of the later include the same
EEG channel at a different time, and another EEG channel
at the same (or different) time. The MIF indicates the
average information (in bits) that can be inferred from one
measurement about a second measurement, and is a function
of the time delay (number of time steps) between the
measurements. The mutnal information function also mea-
sures the nonlinear time dependent correlation in the same
signal. For EEG data, information decay in an individual
channel (univariate MIF) indicates local time scale, as the
average time lag (t; —t;) that makes x(t;) independent of x(t;),
and corresponds to the first (local) minimum (M; in
timesteps) in the MIF (3). For use herein, a minimum is
defined as two successive decreases in the signal value,
followed by two successive increases in signal value. Other
definitions were tested and found to yield less consistent
results. The MIF, I(Q,S), and system entropy (H) for two
measurements (Q and S) are defined by:

1(Q,5) = I(5,Q) = H(Q) + H(S) - H(S,Q) Eq. 13

H(S) =— X Pg(slog[Ps(s:)] Eq. 14
4
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-continued

H(S0)=~ T ProlsigploslPsolss)] Eq. 15

S denotes the whole system that consists of a set of
possible messages (measurements for the value of s), s;, 5,,

., 5, with associated probabilities P,(s,), P,(s5), - - - »
P(s,). Q denotes a second system that consists of a set of
possible messages (measured values with a time delay
relative to the s, values), q,, q,, . - . , q, With associated
probabilities Py (q;), Pp(q2), . . . » Po(q,). The function
P,(s,, q;) denotes the joint probability of both states occur-
ring simultaneously. If the logarithm is taken to the base two,
then H is in units of bits. Fraser and Swinney (3) describe the
details for evaluating 1(Q.S), including a sequence of recur-
sive partitions in (s, q;) space to achieve adequate accuracy
with tailoring to the local data structure. -

The maximum-likelihood correlation dimension (D) is
based on the early work by Takens (14) with modifications
for noise (13):

-1

oe| (e)ge(5)]

where M is the number of randomly sampled point pairs, 1;;
is the normalized maximum-norm distance between the
(randomly chosen) i-j point pairs as defined in Eq. 17
(below), and 1, is the normalized distance (scale length)
associated with noise as measured from the time serial data.
The distances are normalized with respect to some nominal
scale length (Lo), ie. 1,=L;/L, and 1,=L, /L, with L, as a
representative scale length (typically a multiple of the abso-
lute average deviation). The choice of scale length is a
balance between a small scale for sensitivity to local dynam-
ics (typically at L,<5a) and avoidance of excessive noise

Eq. 16

ry—In
1—r,

(typically at L, =a). The distances (L) are defined by:
Eq. 17
L= max btk — X3l
0=k=m-1

where m is the average number of points per cycle from Eq.
12 (i.e., m =T_). Schouten et al. (40) describe the details for
evaluating Eqs 16-17 to measure of the number of degrees
of freedom in a system (e.g., the number of coupled first-
order differential equations to depict the dynamics).

The Kolmogorov entropy (K-entropy or simply entropy)
measures the rate of information loss per unit time, or
(alternatively) the degree of predictability. A positive, finite
entropy generally is considered to be a clear demonstration
that the time series and its underlying dynamics are chaotic.
An infinite entropy indicates a stochastic, non-deterministic
(totally unpredictable) phenomenon. For entropy
determination, one begins with two orbits on a chaotic
attractor that are initially very close together. The entropy
then is estimated from the average divergence time for pairs
of initially-close orbits. More precisely, the entropy is
obtained from the average time for two points on an attractor
to go from an initial separation (L <L,), to become separated
by more than a specific distance (L. £L,). The maximum-
likelihood entropy (K):

k=_fslog(1——;)and Ea 18

p=( L) ¥
=" 7)£1b‘

with b; as the number of timesteps for two points, initially
within L<L,, to diverge to L>L,,. The work by Schouten et

Eq. 19
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al. (12), and references therein, provide details of the
method. Note that the entropy used here is the order-2
Kolmogorov entropy which hereafter is called simply
entropy.

The entropy (K) and correlation dimension (D) usually
are reported in the limit of zero scale length. However, EEG
data (and all biomedical data) have substantial noise.
Consequently, the nonlinear measures, K and D, are reported
for a finite scale length (L) that is slightly larger than the
noise. Thus, the values of K and D, that are reported here,
do not capture the full complexity of brain dynamics, ie.,
their values are smaller than expected for the zero-scale-
length limit. K and D are interpreted as nonlinear statistical
indices of finite-scale dynamic structure.

EXAMPLE I

The method and apparatus of this invention are illustrated
by the analysis of two datasets. Both datasets are from the
same patient, who is a 20-year-old female with a lifelong
history of seizures, beginning at age 4 months. The cause of
the seizures is not established, although neuro-imaging
studies (including computerized tomography and magnetic
resonance) are normal. The seizures are poorly controlled
despite treatment with various combinations of anti-
epileptic drugs, which at the time of the recordings were
Phenytoin, Phenobarbital, and Felbamate. The seizures are
partial complex with some occasions of secondary gener-
alization. During the seizure designated Example I, the
patient was sitting up in bed, doing some neurophysiologic
testing. Her EEG shows an activated pattern. She then
showed automatisms with picking movements and staring,
followed by vocalizations (several seconds of screams).
Hyper-extended head and neck posturing followed. Her
upper extremities became flexed, and then she showed
clonic activity, involving abduction/adduction at the shoul-
ders and hips. There was tonic posturing and clonic activity
of all extremities. The convulsive movements were associ-
ated with high-amplitude EEG waves, involving spikes,
polyspikes, and much artifact activity. As the clinical seizure
spontaneously terminated, the subject was unresponsive and
made loud snoring sounds. Then, the brain wave amplitudes
became quite suppressed. The automatisms were associated
with polyspike discharges from the left frontal region. After
seizure termination, spike discharges occurred from this
same region, followed by suppressed background waves.
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tion from non-seizure to seizure). These three epochs of data
were provided and analyzed as three separate, non-
contiguous ten-minute data segments. The non-seizure data
segment ended several hours before the transition data,
which in turn ended ~10 seconds before the start of the
seizure data segment. The results are combined as one
thirty-minute set of plots for the e-data (FIG. 4), f-data (FIG.
5), g-data (FIG. 6), and h-data (FIG. 7), with gaps in the
analysis to indicate where one dataset ends and the next
dataset begins. In particular, the data from 10-590 s is the
non-seizure epoch with large amplitude signals at 520-600
s from chewing and drinking. The data from 610-1190 s is
the (transition) period immediately before seizure. The data
from 1210-1790 s includes the seizure and post-ictal phases.
The various measures were obtained for every analysis-
window, and the resulting values were plotted at the center
of the 20-second analysis-window.

Each plot in FIGS. 4-7 for Example I displays the
analysis-window-centered measure as a solid line. The
dashed line (- - -) in each figure is the average value of the
measure (from Eq. 6) over an 11-point averaging-window,
plotted at the central (sixth) point of the averaging window.
The dotted line ( . . . ) in each figure is the corresponding
sample standard deviation over this 11-point averaging-
window (from Eq. 9), also plotted at the central point of the
averaging-window. The scale length (L,) was fixed at ~1.4
times the absolute average deviation, as obtained by aver-
aging over the complete non-seizure e-data, and was used in
all the analyses as the reference scale length for all three data
epochs. Smaller values for this scale length caused numeri-
cal problems in the determinations of the correlation dimen-
sion and the Kolmogorov entropy; larger values limited the
resolution of the nonlinear measures.

The clinical seizure in Example I occurred from 53 to 95
s in the (third) seizure epoch (1253 to 1295s in FIGS. 4-7).
Rhythmic convulsions began at 1295s, and post-ictal fea-

.tures appeared at 1314s. Table 1 shows features in the

nonlinear measures that uniquely indicate the seizure;
starred entries (*) denote no clear indicators. Two measures
(the peak in Kolmogorov entropy of g-data and the peak in
correlation dimension of h-data) show epilepsy onset begin-
ning ~30 seconds before the clinical seizure.

TABLE 1

Summary of seizure indicators in Example I

Specific measure e-data f-data g-data h-data
Time per cycle (T.) * abrupt decrease  * *
(timesteps per cycle) T, <200
1255-1300s
Entropy (K) . abrupt increase abrupt increases  abrupt increase abrupt increase
(bits/second) K > 0.063 X > 0.008 K > 0.056 K > 0.016
1230-1350s 1230-1240s 1220-1340s 1230-1320s
1270-1275s
1280-1300s
1" Min. in MIF (M) . abrupt decrease  * abrupt decrease
(timesteps) M, < 85 M, <20
1290-1310s 1270-1280s
. Correlation dimension (D)  abrupt increase abrupt increase  abrupt increase abrupt increase
D>5 D> 56 D>32 D>2
1270-1305s 1340-1345s 1235-1340s 1220-1325s
EXAMPLE I

The results from Example I involved four analyses (e-, f-, g5

g-, and h-data) on the three epochs of channel 13 data
(epileptic seizure and post-seizure, non-seizure, and transi-

The dataset designated Example II is from the same
patient as Example I, who is a 20-year-old female with a
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lifelong history of seizures as previously described in
Example L During the seizure designated Example II, the
patient is lying in bed, awake with her right upper extremity
in a flexed posture. The EEG shows spike-wave discharges
in the left hemisphere, after which the brain waves become
very sharp, dominated by high frequency activity and arti-
facts. The patient showed eye deviation to the right and some
head turning to the right, with head jerking also to the right,
but without any usual posturing of the right upper extremity.
The eye/head turning is preceded by a high-frequency
vocalization. After the clinical seizure spontaneously
terminated, the EEG shows high amplitude wave slowing
and subsequent amplitude suppression. The subject
remained awake during the seizure but was poorly respon-
sive.

The results from Example II for channel 13 involved four
analyses (e-, f-, g-, and h-data) on one 23-minute dataset that
included all three epochs of chamnel 13 data (epileptic
seizure, non-seizure, and transition from non-seizure to
seizure). The non-seizure period spanned 10-400s. The
transition period occurred over 410-1200s. The seizure
began at 1245s and ended at 1290s. The patient was aphasic
at 1300s, with head movements and verbalization at 1315s.

The scale length (L) was fixed at ~1.0 times the absolute
average deviation, as obtained by averaging over the non-
seizure e-data, and was used in all the analyses as the
reference scale length for all three data epochs. The results
were obtained as before, and arc plotted for e-data (FIG. 8),
f-data, (FIG. 9), g-data (FIG. 10), and h-data (FIG. 11). The
seizure is indicated clearly by several unique features in the
nonlinear measures, as shown in Table 2; starred entries (¥)
denote no clear indicators. None of these measures show the
epilepsy onset before the clinical seizure.

TABLE 2
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time serial sequences of nonlinear measures hereinbefore
described are seizure indicators.

By comparing indicative trends in non-linear measures of
the patient’s brain wave data with known seizure indicators,
it can be clearly determined by whether the indicative trends
correspond with known seizure indicators whether a seizure
is occurring in the patient.

Tables 1 and 2 and FIGS. 4 —11 clearly show that epileptic
seizures are indicated by a number of trends in nonlinear
measures of brain-wave data including the following: an
abrupt decrease in the number of timesteps per cycle for
f-data 101; an abrupt increase in the number of timesteps per
cycle for g-data 103; an abrupt increase in the number of
timesteps per cycle for h-data 105; an abrupt increase in the
entropy of e-data 107; an abrupt increase in the entropy of
f-data 109; an abrupt increase in the entropy of g-data 111;
an abrupt increase in the entropy of h-data 113; an abrupt
decrease in the first minimum in the mutual information
function for f-data 115; an abrupt decrease in the first
minimum in the mutual information function for h-data 117;
an abrupt increase in the correlation dimension of e-data
119; an abrupt increase in the correlation dimension of f-data
121; an abrupt increase in the correlation dimension of
g-data 123; an abrupt increase in the correlation dimension
of h-data 125; and combinations thereof.

While there has been shown and described what are
presently considered the preferred embodiments of the.
invention, it will be obvious to those skilled in the art that
various changes and modifications can be made therein
without departing from the scope of the inventions defined
by the appended claims.

What is claimed is:

1. A method for automatically detecting an epileptic
seizure in a patient comprising the steps of:

Summary of seizure indicators in Example T

Specific measure e~data f-data g-data h-data
Time per cycle (T,) b b abrupt increases  abrupt increases
(timesteps/cycle) T, > 24 T.>62
1255-1275s 1250-1275s
1290-1300s 1290-1300s
Entropy (K) abrupt increase  abrupt increase abrupt increase  abrupt increase
(bits/second) K > 0.089 K > 0.006 K>0.1 KX >0014
1255-1290s 1270-1330s 1255-1290s 1250-1320s
It Min. in MIF (M,) * abrupt decrease * *
(timesteps) M, <80
1250-1300s
Correlation dimension (D) abrupt increase abrupt increase abrupt increase  abrupt increase
D>4 D>45 D>3 D>25
1250-1300s 1280-1300s 1240-1310s 1240-1315s

In Example I and Example I, abrupt increases in both the
Kolmogorov entropy and correlation dimension indicate
both epileptic seizures, although the seizures are clinically
very different, as described further herein. Abrupt decreases
in (T )number of timesteps per cycle (for f-data) and in (M,)
the first minimum in the mutual information function (for f-
and h-data) also indicate the first seizure (Example I). An
abrupt decrease in M, (f-data) and abrupt increases in T, (g-
and h-data) mark the second seizure (Example II). These
indicators of seizure are summarized in Tables 1 and 2. The
difference in seizure indication (T,) for the two seizures
implies that care is needed in cataloging such features.

1t has been shown by the foregoing that certain indicative
trends such as sudden increases and sudden decreases in
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(a) providing at least one channel of a patient’s raw brain
wave data, called e-data, selected from the group
consisting of electroencephalogram data and magne-
toencephalogram data;

(b) separating the e-data into artifact data, called f-data,
and artifact-free data, called g-data, while preventing
phase distortions in the data;

(c) processing g-data through a low-pass filter to produce
a low-pass-filtered version of g-data, called h-data;
(d) applying at least one nonlinear measure selected from
the group consisting of time steps per cycle, kolmog-
orov entropy, first minimum in the mutual information
function, and correlation dimension to at least one type
of data selected from the group consisting of e-data,
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f-data, g-data, and h-data to provide at least one time
serial sequence of nonlinear measures, from which at
least one indicative trend selected from the group
consisting of abrupt increases and abrupt decreases can
be determined;

(e) comparing at least one indicative trend with at least
one known seizure indicator; and

(f) determining from said comparison whether an epilep-
tic seizure is occurring in the patient.

2. The method as described in claim 1 further comprising
the step of selecting said at least one time serial sequence of
nonlinear measures from the group consisting of: time per
wave cycle for e-data, time per wave cycle for f-data, time
per wave cycle for g-data, time wave per cycle for h-data,
Kolmogorov entropy for e-data, Kolmogorov entropy for
f-data, Kolmogorov entropy for g-data, Kolmogorov
entropy for h-data, first minimum in the mutual information
function for e-data, first minimum in the mutual information
function for f-data, first minimum in the mutnal information
function for g-data, first minimum in the mutual information
function for h-data, correlation dimension for e-data, corre-
lation dimension for f-data, correlation dimension for g-data,
correlation dimension for h-data, and combinations thereof.

3. The method as described in claim 2 further comprising
the step of selecting said at least one seizure indicator from
the group consisting of: an abrupt decrease in the number of
timesteps per cycle for f-data; an abrupt increase in the
number of timesteps per cycle for g-data; an abrupt increase
in in the number of timesteps per cycle for h-data; an abrupt
increase in the entropy of e-data; an abrupt increase in the
entropy of f-data; an abrupt increase in the entropy of g-data;
an abrupt increase in the entropy of h-data; an abrupt
decrease in the first minimum in the mutual information
function for f-data; an abrupt decrease in the first minimum
in the mutual information function for h-data; an abrupt
increase in the correlation dimension of e-data; an abrupt
increase in the correlation dimension of f-data; an abrupt
increase in the correlation dimension of g-data; an abrupt
increase in the correlation dimension of h-data; and combi-
nations thereof.

4. The method as described in claim 1 further comprising
the step of separating the e-data into f-data and g-data by use
of a zero-phase filter.

5. The method as described in claim 1 wherein the step of
processing data through a low-pass filter is preceded by the
step of selecting a standard low-pass filter selected from the
group consisting of second-order, third-order, and fourth-
order low-pass filters at frequencies between about 35 Hz
and about 60 Hz.

6. The method as described in claim 5 wherein the step of
selecting a low-pass filter comprises the step of selecting a
standard fourth-order low-pass filter at about 50 Hz.

7. Apparatus for automatically detecting an epileptic
seizure in a patient comprising:

(a) data provision means for providing at least one chan-
nel of a patient’s raw brain wave data called e-data
selected from the group consisting of electroencepha-
logram data and magnetoencephalogram data;

(b) separation means for separating e-data into artifact
data, called f-data, and artifact-free data, called g-data,
while preventing phase distortions in the data, commu-
nicably connected to the data provision means;

(c) low-pass filter means for filtering g-data to produce a
low-pass filtered version of g-data, called h-data, com-
municably connected to the separation means;

(d) application means for applying at least one nonlinear
measure selected from the group consisting of time
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steps per cycle, Kolmogorov entropy, first minimum in
the mutual information function, and correlation
dimension to at least one type of data selected from the
group consisting of e-data, f-data, g-data, and h-data to
provide at least one time serial sequence of nonlinear
measures, from which at least one indicative trend
selected from the group consisting of abrupt increases
and abrupt decreases can be determined, communica-
bly connected to the low-pass filter means;

(e) comparison means for comparing at least one indica-
tive trend with known seizure indicators, communica-
bly connected to the application means; and

(f) determination means for determining from the com-
parison whether an epileptic seizure is occurring in the
patient, communicably connected to the comparison
means.

8. The apparatus as described in claim 7 wherein said at
least one time serial sequence of nonlinear measures com-
prises one from a group consisting of: time per wave cycle
for e-data, time per wave cycle for f-data, time per wave
cycle for g-data, time wave per cycle for h-data, Kolmog-
orov entropy for e-data, Kolmogorov entropy for f-data,
Kolmogorov entropy for g-data, Kolmogorov entropy for
h-data, first minimum in the mutual information function for
e-data, first minimum in the mutual information function for
f data, first minimum in the mutual information function for
g-data, first minimum in the mutual information function for
h-data, correlation dimension for e-data, correlation dimen-
sion for f-data, correlation dimension for g-data, correlation
dimension for h-data, and combinations thereof.

9. The apparatus as described in claim 8 wherein said at
least one seizure indicator comprises one from a group
consisting of: an abrupt decrease in the number of timesteps
per cycle for f-data; an abrupt increase in the number of
timesteps per cycle for g-data; an abrupt increase in the
number of timesteps per cycle for h-data; an abrupt increase
in the entropy of e-data; an abrupt increase in the entropy of
f-data; an abrupt increase in the entropy of g-data; an abrupt
increase in the entropy of h-data; an abrupt decrease in the
first minimum in the mutual information function for f-data;
an abrupt decrease in the first minimum in the mutual
information function for h-data; an abrupt increase in the
correlation dimension of e-data; an abrupt increase in the
correlation dimension of f-data; an abrupt increase in the
correlation dimension of g-data; an abrupt increase in the
correlation dimension of h-data; and combinations thereof.

10. The apparatus as described in claim 7 wherein said
separation means comprises a zero-phase filter.

11. The apparatus as described in claim 10 wherein said
zero-phase filter comprises a programmed integrated circait
semiconductor chip.

12. The apparatus as described in claim 7 wherein said
low-pass filter means comprises a standard low-pass filter
selected from the group consisting of second-order, third-
order, and fourth-order low-pass filters at frequencies
between about 35 Hz and about 60 Hz.

13. The apparatus as described in claim 12 wherein said
low-pass filter comprises a standard fourth-order low-pass
filter at about 50 Hz.

14. The apparatus as described in claim 7 further com-
prising notification means for providing notification that a
seizure is occurring in the patient, said notification means
being communicably connected to said determination
means.
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