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ABSTRACT 

 
The U.S. Army needs prognostic analysis of mission-critical equipment to enable condition-based 
maintenance before failure. ORNL has developed and patented prognostic technology that quantifies 
condition change from noisy, multi-channel, time-serial data. This report describes an initial application of 
ORNL’s prognostic technology to the Army’s Tactical Quiet Generator (TQG), which is designed to operate 
continuously at 10 kW. Less-than-full power operation causes unburned fuel to accumulate on internal 
components, thereby degrading operation and eventually leading to failure. The first objective of this work 
was identification of easily-acquired, process-indicative data. Two types of appropriate data were identified, 
namely output-electrical current and voltage, plus tri-axial acceleration (vibration). The second objective of 
this work was data quality analysis to avoid the garbage-in-garbage-out syndrome. Quality analysis identified 
more than 10% of the current data as having consecutive values that are constant, or that saturate at an 
extreme value. Consequently, the electrical data were not analyzed further. The third objective was condition-
change analysis to indicate operational stress under non-ideal operation and machine degradation in 
proportion to the operational stress. Application of ORNL’s novel phase-space dissimilarity measures to the 
vibration power quantified the rising operational stress in direct proportion to the less-than-full-load power. 
We conclude that ORNL’s technology is an excellent candidate to meet the U.S. Army’s need for equipment 
prognostication.  
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1. INTRODUCTION 
 
Real-time prognostication of mission-critical equipment is required to avoid unexpected failures. Typical 
failures include structural cracking, misalignment, imbalance, short-circuit, broken gears, bearing faults, dust 
clogging, exhaust deposits on internal parts, and severe wear from wind-blown particulates. Recent 
information-technology developments (e.g., low-form-factor micro-processors; low-cost, wireless, reduced-
size sensors; mesh networking) can now be combined with advanced-prognostics software for longer 
prediction horizons, while adding minimal weight and bulk.  
 
ORNL staff have developed and patented a novel statistical method that detects condition change from noisy, 
multi-channel, time-serial data. ORNL has demonstrated the prognostic technology for both biomedical1-15 
and machine applications15-26. Specific machine demonstrations to date include both accelerated failure tests 
and seeded faults in motors and motor-driven components: 

• Detection of progressively larger drill bit wear from spindle-motor current21; 
• Distinction between different states for (un)balanced centrifugal pump from motor power21; 
• Imbalance and misalignment faults in a motor-driven pump from electrical power24; 
• Forewarning of gear failure from torque and vibration data22; 
• Forewarning of bearing failure from vibration data22; 
• Motor faults (air-gap offset, cut rotor, turn-to-turn short, imbalance) from power23; 
• Detection of progressively larger crack in rotating blade from vibration and electrical power22; 
• Forewarning of structural failure from stress and strain data18-20, 25. 

The technology readiness level (TRL) is five, involving integrated, high-fidelity demonstration of the 
technology components for realistic environments.  
 
The model-independent, data-driven approach quantifies dynamical change in nonlinear systems from time-
windowed data sets. The method first rejects inadequate-quality data. Next, a novel filter removes 
confounding artifacts (e.g., fundamental sinusoid in electrical data). The artifact-filtered data then are 
converted to a discrete dynamical signature in the form of a statistical distribution function (DF) via time-
delay phase-space reconstruction. Dissimilarity measures quantify condition change between the baseline 
(normal state) DF and subsequent test case DFs. Several sequential occurrences of the dissimilarity measures 
above a threshold indicate significant change, as a forewarning of failure. This approach also provides an 
indication of failure onset. This approach has been demonstrated for motors and motor-driven components 
over more than three orders of magnitude in power (0.25 to 800-HP). PDF copies of our reports1-26 and 
patents27-34 are available at the author’s publications link, 
http://computing.ornl.gov/cse_home/staff/hively.shtml. 
 
The objectives of this work are: (1) identification of easily-acquired, process-indicative data for the machine’s 
health status; (2) data quality analysis to avoid the garbage-in-garbage-out syndrome; (3) condition-change 
analysis to indicate operational stress under non-ideal operation and machine degradation in proportion to the 
operational stress; and (4) forewarning of failure if it occurs. The long-term goal (not for the present work) is 
determination of the remaining useful operational life of the TQG (Figure 1), or equivalently an estimate for 
the time to failure. This report is organized as follows. Section 2 provides background information for the 
work. Section 3 describes the analysis methodology. Section 4 discusses the results for the TQG application. 
Section 5 presents the conclusions. 
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2. BACKGROUND 
 
The need for reliable electrical power in the battlefield environment is a requirement that cuts across all 
military services and all locations for the foreseeable future. These power systems must be portable, 
lightweight, quiet, electronically controlled, and continuously operable for long periods on a variety of fuels 
in extreme environmental conditions. Previous ORNL work35 for the U.S. Department of Defense’s Mobile 
Electric Power Program assessed the state of the art in key power technologies, including engines, alternators, 
power electronics, digital control, and diagnostics and prognostics. The goal was a set of design 
recommendations for future generators as a TQG replacement to take advantage of advanced technologies 
under the above usage constraints.  
 
Subsequent ORNL work36 developed a proof-of-concept 8-kW unit for the Mobile Electric Power Program on 
the basis of the earlier recommendations35. The requirements for this unit were: 50, 60, and 400 Hz from one 
unit; reduction of the generator-set weight by up to 55%; a similar reduction in volume; increase in fuel 
efficiency; maximal flexibility; low acoustic signature (65 dBA at 7m); low cost; high system reliability; and 
all on an aggressive proof-of-concept schedule. The digital controls for this unit allowed a digital signal 
processor (DSP) to monitor, collect, and store system data for analysis in the background. Insufficient time 
had elapsed during the testing period for failures to be assessed, so prognostic demonstration remained a 
subject of future work. 
 
Condition-based maintenance enhances reliability and operational readiness by providing indicators about the 
equipment’s present state (diagnostic), as well as an estimate for its future state (prognostic). The advantages 
of condition-based maintenance include: 

o Increase in availability; 
o Reduction in downtime; 
o Reduction in mission aborts arising from equipment failure; 
o Improvement in management and planning of maintenance; 
o Lower maintenance cost; 
o Verification of equipment condition prior to deployment; 
o Identification of repair/replacement needs before failure; 
o Reduction in needs for additional diagnostic equipment; 
o Greater safety. 

The bottom line is higher mission success rate at lower cost in terms of lives, equipment, and dollars. 
 
The previous work35 noted that reliable prognostics are very difficult for a variety of reasons, including 
different degradation rates for various machine components, depending on their initial condition, service 
environment, and maintenance history. Prediction of time-to-failure requires up-to-date trends in key 
parameters that are related to component condition and life span. Typical indicators include lubrication oil 
pressure, engine temperature, and fuel level, as indicators of remaining life in the lubrication oil and oil filter, 
air filter, fuel filter, fan belt, and fuel injector. That work noted that 60-70% of TQG problems result from 
buildup of unburned fuel (wet stacking) and carbon residue in the engine and exhaust system. Wet stacking 
occurs when the TQG runs in an under-loaded condition, which is accompanied by lower operating 
temperature and increased vibration.  
 
The major roadblocks to prognostication include37: (a) incomplete understanding of fault evolution and failure 
physics; (b) lack of predictive methodologies for unsteady failure signatures; (c) ignorance about controlling 
parameters; and (d) emulation of a real operating environment. Our present approach addresses items (a)-(b) 
by quantifying the (non-stationary) condition change as a sequence of nonlinear statistical signatures; item (c) 
by associating change in the controlling parameter with the equipment response; and item (d) by designing, 
running, and analyzing tests that are similar to real-world operations. Previous ORNL work16 provided a brief 
history of dynamical machine analysis over the last 40 years, which will not be repeated here. 
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3. ANALYSIS METHODOLOGY 
 
For the reader’s convenience, we summarize the analysis methodology15-16, utilizing three basic approaches, 
namely conventional statistical measures, traditional nonlinear measures, and ORNL’s novel phase-space 
dissimilarity measures. A process-indicative scalar signal, e, is sampled at equal time intervals, τ, starting at 
an initial time, t0, yielding a time-serial sequence of N points, ei = e(t0 + iτ). Artifacts are removed from this 
data with a zero-phase quadratic filter34 that performs better than conventional filters. This filter uses a 
moving window, with the same number of data points, w, on either side of a central point. A parabola is fitted 
in the least-squares sense over this window of 2w+1 data points. The central point of the fit is an estimate the 
low-frequency artifact, fi. The residual (artifact-filtered) signal, gi = ei – fi, has essentially no low-frequency 
artifact activity. Figures 2-6 illustrate a low-frequency artifact in TQG electrical data, namely the well-known 
sinusoidal variation, which otherwise obscures the useful dynamical information (“noise” in the view of 
conventional analysis). All subsequent analysis uses this artifact-filtered data, gi. 
 
Conventional statistical measures38 (CSM) provide a general characterization of data. Typical CSM are the 
mean: g  = Σi gi/N (the sum over i, Σi, includes N points in the analysis window); the absolute average 
deviation, a = Σi |gi – g |/N; and the sample standard deviation, σ = [Σi (gi – g )2/(N – 1)]1/2. Higher moments 
about the mean are skewness (third moment): SK = Σi (gi – g )3/Nσ3, and kurtosis (fourth moment), KT = Σi 
(gi – g )4/Nσ4 – 3. Additional measures are the minimum, gn, and maximum, gx, in the signal. A time-scale 
measure is the average number of time steps per cycle: m = N/[(nc – 1)/2] ≈ 2N/nc, for nc >>1 (nc = average 
number of crossings of the mean). Another time-scale measure is the first zero, Z, in autocorrelation function, 
which is defined as: A(j) = Σi (gi – g )(gi+j – g )/(N – j)σ2. CSM are useful in the analysis of linear processes, 
but typically provide inconsistent discrimination of condition change in nonlinear systems. They are included 
here for completeness and comparison. 
 
Traditional nonlinear measures (TNM) can be useful for characterization of nonlinear data. One is the 
maximum-likelihood correlation dimension39-40, D = –M{Σij ln[(δij/δ0 – δn/δ0)/(1 – δn/δ0)]}-1, which measures 
complexity. Here, M is the number of randomly-sampled pairs of phase-space (PS) points. The distance 
between PS-point pairs, i and j, is δij = max(0≤k≤ m–1) |gi+k – gj+k|, where m is the average number of data 
points per cycle, as defined above. The distance δn is the scale length that is associated with noise. Distances 
are normalized with respect to a nominal scale length, δ0, which is a balance between sensitivity to local 
dynamics (typically at δ0

 ≤5a) and avoidance of excessive noise (typically at δ0
 ≥ a).  Here, the symbol, a , 

denotes the absolute average deviation (defined in the paragraph on CSM) as a robust indicator of 
variability41. Another typical TNM is Kolmogorov entropy (K-entropy), K, which measures the rate of 
information loss per unit time (e.g., bits per second as a measure of predictability), and is the sum of the 
positive Lyapunov exponents. Positive, finite K is generally viewed as an indication of chaotic dynamics. 
Very large entropy indicates a stochastic (totally unpredictable) phenomenon. K is estimated from the average 
number of time steps, bi, for two PS points, initially within δ ≤ δ0, to diverge to δ  > δ 

0. The maximum-
likelihood form of Schouten et al.41 is K = –fs log(1 – 1/b), with b = Σi bi/M for M point pairs. The data-
sampling rate is fs. A third TNM is the mutual information function (MIF), which measures average bits of 
information that can be inferred from one measurement about a second, as a function of the time delay 
between the two signals. Shannon and Weaver42 developed the MIF, which was later applied to time series43. 
The first minimum in the MIF, M1, gives the average de-correlation time. The MIF is: I(q,r) = I(r, q) = H(q) + 
H(r) – H(r, q). Here, H is the entropy: H(q) = –Σi P(qi) log2[P(qi)] and H(q, r) = –Σi P(qi, rj) log2[P(qi, rj)]. One 
set of measurements is Q = {q1, q2, .  .  , qN}, with associated occurrence probabilities, P(q1), P(q2), .  .  .  , 
P(qN). A second measurement set is R = {r1, r2, .  .  .  , rN}, with a time delay relative to Q, and with occurrence 

probabilities P(r1), P(r2), .  .  . , P(rN). P(qi, rj) is the joint probability that both states occur simultaneously. 
TNM usually do a poor job of discriminating condition change, but are also included for comparison and 
completeness. 
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The gi-data are converted into S discrete (symbolized) values16, si, namely 0 ≤ si ≤ S – 1. Equiprobable 
symbols are formed by ordering all N of the base case artifact-filtered, time-serial data points from the 
smallest to largest value. The first N/S of these ordered values correspond to the first symbol, 0. Ordered data 
values (N/S) + 1 through 2N/S correspond to the second symbol, 1, and so on. Equiprobable symbols have 
non-uniform partitions in the signal amplitude with the same occurrence frequency of gi values by 
construction, and thus have no information about the dynamical structure. In contrast, symbols with uniform 
partitions (uniform symbols), si = S (gi - gn)/(gx - gn), have inherent dynamical structure before beginning the 
PS reconstruction, where gx and gn are the maximum and minimum values of the gi-data, respectively. Thus, 
one advantage of equiprobable symbols is that dynamical structure arises only from the PS reconstruction, as 
described below. Moreover, large negative and large positive values of gi have little effect on equiprobable 
symbolization, but dramatically change the partitions for uniform symbols. The variable, UE, is used to 
designate uniform, UE = 0, or equiprobable , UE = 1, symbols. 
 
The time-serial si-data are next converted into a geometric object via phase-space (PS) reconstruction via 
time-delay vectors, y(i) = [si, si+μ , . . . , si+(d–1)μ], partitioning the PS into Sd hypercubes or bins16. Each bin can 
be identified by a unique integer, J, via base-S arithmetic, J = Σm si+mμ Sm, where the summation, Σm, is over 
the range 0 ≤ m ≤ d-1. Additional data channels may add more information about the inter-connected 
dynamics, implying that a multi-channel PS-vector could contain more information than a single channel. The 
multi-channel PS vector is: y(i) = [si(1), si+μ(1) , . . . , si+(d–1)μ(1), …, si(C), si+μ(C) , . . . , si+(d–1)μ(C)]. Here, the 
symbol, s(k) denotes values from the k-th channel, 1 ≤ k ≤ C, for up to C channels. Now, the symbolization 
divides the multi-channel PS in SCd bins, where the bin identifier is J =Σk Σm s(k)i+mμ Sm+d(k-1). The choice of 
lag, μ, and embedding dimension, d, determines how well the PS reconstruction unfolds the dynamics. An 
excessively large embedding dimension could result in over-fitting of real data with finite length and noise. 
Moreover, different observables of a system contain unequal amounts of dynamical information, implying that 
PS reconstruction could be easier from one choice of variable(s), but more difficult or impossible from 
another choice. This analysis seeks to balance these caveats for finite-length noisy data. 
 
Conversion of the time-serial data into discrete PS states allows the construction of a statistical distribution 
function (DF) by counting the number of PS points that occur in each bin16. This DF is the discretized density 
of PS states. QJ and RJ denote the population of the J-th DF bin for the base case (nominal state), and for a test 
case (off-normal state), respectively. The test case is compared to the base case by dissimilarity measures, 
namely the χ2 statistic and L1 distance:  
 

( ) ( )∑ +−=
J

JJJJn RQRQ ,/22χ         (1) 

∑ −=
J

JJn RQL .           (2) 

The sum in Eqs. (1) - (2) is over all of the populated PS bins. In this work, χ2 is not an unbiased statistic for 
testing a null statistical hypothesis but rather is a relative measure7 of dissimilarity between the two DFs. The 
L1 distance is the natural metric for DFs by its direct relation to the total invariant measure on the attractor. 
These measures account for changes in the geometry and visitation frequency of the attractor. Consistent 
calculation requires the same number of points in both the base and test case DFs, identically sampled; 
otherwise the distribution functions must be rescaled. 
 
The accuracy and sensitivity of the PS reconstruction can be enhanced by connecting successive PS points as 
prescribed by the underlying dynamics, y(i) → y(i + 1). A discrete representation of the process flow, Y(i) = 
[y(i), y(i + 1)], is formed by adjoining two successive vectors from the d-dimensional reconstructed PS. Y(i) is 
a 2d-dimensional, connected-phase-space (CPS) vector. As before, Q and R denote the CPS DFs for the base 
case and test case, respectively. The measures of dissimilarity between these two CPS DFs are defined via the 
L1-distance and χ2 statistic, as before: 
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( ) ( )∑ +−=
JK

JKJKJKJKc RQRQ ,/22χ         (3) 

∑ −=
JK

JKJKc RQL .           (4) 

The subscript c denotes CPS measures in Eqs. (3) - (4), while the subscript, n, in Eqs. (1) - (2) denotes non-
connected  PS states. The subscripts, J and K, are identifiers for the initial, y(i), and final, y(i+1), PS states, 
respectively. The value μ = 1 results in d – 1 components of y(i + 1) being redundant with those of y(i); this 
redundancy is allowed to accommodate other data such as discrete points from two-dimensional maps. CPS 
measures have higher discriminating power than their non-connected counterparts. Indeed, these measures 
rigorously satisfy the inequalities6: χn

2 ≤ Ln, χc
2 ≤ Lc, Ln ≤ Lc, and χn

2 ≤ χc
2.  

 
The quantities in Eqs. (1) – (4) are called phase space dissimilarity measures (PSDM). These measures 
discriminate between different chaotic regimes, and transitions between regular and chaotic regimes. Such 
discrimination is impossible with traditional nonlinear measures (e.g., Lyapunov exponents, Kolmogorov 
entropy, correlation dimension44). Straightforward methods exist45-47 for discriminating between regular and 
chaotic dynamics, or for detecting the transition between these regimes. The reason for this improvement is 
rather simple: discrimination by TNM is based on a difference of averages, while discrimination via PSDM is 
based on summing the absolute value of differences. 
 
The disparate range and variability of these measures are difficult to interpret, especially for noisy data. A 
consistent means of comparison is via renormalized dissimilarity measures (RDM)5-6, which are defined by 
the following form: U(V) = |Vi – V |/σ1, as the number of standard deviations, σ1, that the test case deviates 
from the base case mean. The base case corresponds to the nominal-state dynamics of the TQG. V denotes a 
phase-space dissimilarity measure from the set, V = {Ln, Lc, χn

2, and χc
2}. We obtain the mean value,V , of the 

dissimilarity measure by comparison among the B(B–1)/2 unique combinations of the B base case cutsets, 
with a corresponding sample standard deviation, σ1. We subsequently compare each contiguous, non-
overlapping test case cutset to each of the B base case cutsets, and obtain the corresponding average 
dissimilarity value, Vi, of the i-th analysis window for each dissimilarity measure. A statistically significant 
trend in the RDM indicates equipment degradation for failure forewarning.  

 
The best analysis parameters, {N, w, B, S, d, μ, UE}, depend not only on the system, but also on the specific 
data under consideration. From experience, the longest analysis window of N points is best, limited by the 
total length of the data, N = 95,550, as explained below. The choice of the artifact-filter half-width is w = 250 
to remove the secular term in the time-integration of acceleration, also from experience. The value for the 
number of base case cutsets is B =10, as a balance between a reasonably short quasi-stationary period of 
“normal” dynamics and a sufficiently long period for statistical significance. Our analysis over the remaining 
parameters, {S, d, μ, UE}, proceeds as follows: (a) choose the parameter set; (b) compute the renormalized PS 
dissimilarity measures for the specific machine data; and (c) exhaustively search over the parameters for the 
best indication of condition change. 
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4. RESULTS 
 
The specific machine application is the Army’s 10-kW Tactical Quiet Generator (TQG), which is a constant-
speed (and constant voltage) diesel motor-generator (Figure 1). Operation under less-than-full-load conditions 
allows unburned fuel to escape along with exhaust gases. This unburned fuel is deposited continuously on 
internal components (wet stacking), resulting in degraded operation, and eventually failure. Thus, nominal 
operation is at full load, while less-than-full load corresponds to an increasing-severity operational stress. 
 
Discussions with the sponsor identified two kinds of easily acquired, process-indicative data. One is electrical 
data from the generator-output: (single phase) current, Ii, and voltage, Vi, versus time, ti. Another is tri-axial 
vibration data, ai, versus time, ti, from a hard-mounted accelerometer on the diesel motor. The data are 
sampled at 100 kHz for 10 seconds, or 106 samples. The sponsor supplied both kinds of data for various 
generator-load conditions (10, 7.5, 5, 2.5, 0.5, and 0 kW). These data satisfy the first objective for this work, 
namely identification (and acquisition) of process-indicative TQG data. 
 
Data quality analysis verifies several important features in the data: proper number of data points; any 
intervals with unchanged signal amplitude; saturation at high or low limits as an indicator of improper data 
scaling; consistent signal amplitude across datasets in the test sequence; adequate sampling rate; excessive 
periodic content; and excessive noise. An adequate sampling rate should span the average de-correlation time 
with a sufficient number of time samples. The specific de-correlation-time measures are the location of first 
minimum in the (nonlinear) mutual information function (≥4 time steps) and the first zero in the (linear) auto-
correlation function (≥4 time steps). Excessive periodic content corresponds to more than 50% of the total 
area under the two largest peaks in the Fourier amplitude versus frequency. Excessive periodicity obscures the 
under-lying nonlinear dynamics. Excessive noise obliterates the useful information with disorderly signal 
values. Consequently, a measure of order in the signal (Shannon entropy, E) versus the number of uniform 
data symbols (S) allows determination of the average number of bits of information (b) in the data as the 
maximum in E versus S = 2b; less than five bits of information corresponds to excessive noise. The garbage-
in-garbage-out syndrome is avoided by rejection of data that fails one or more of these tests. 
 
Figures 2-6 illustrate the electrical data with a classic sinusoidal variation in output voltage, Vi, current, Ii, and 
single-phase electrical power, IiVi. The electrical current and power display “noise,” which is a qualitative 
indicator of the machine stress. As the stress on the TQG increases (i.e., as the output load decreases), this 
noise increases in amplitude and becomes more complex. No-load electrical data were unavailable, because 
the resultant current is zero. The data quality analysis showed that all of the electrical data have a significant 
fraction (10% or more) of consecutive values that are constant, or that saturate at the maximum or minimum 
value. Consequently, the electrical data are not analyzed further. 
 
The acceleration data are of high quality, except for the 10 kW-load data, which were corrupted and unusable. 
This finding satisfies the second objective, namely rejection of inadequate quality data. Subsequent analysis 
focuses on the 5 sets of vibration data at TQG-power levels from 0 to 7.5 kW without the corrupted 10-kW 
case. 
 
Previous work16 determined that power is an excellent indicator of machine condition. Consequently, this 
work focuses on instantaneous vibration power, which is p ∝ a•∫a dt. This choice is certainly not unique. For 
example, one component of acceleration might be adequate. The advantage of vibration power is a single 
channel of data (rather than several channels) with all of the three-dimensional dynamics and with a 
proportionate reduction in computational effort to quantify the condition change. Conversion of the tri-axial 
acceleration data to vibration power uses an artifact-filter half-width of w = 250 to eliminate the secular term, 
yielding 955,500 data samples at each of the five power levels. The five resultant datasets of vibration power 
were concatenated into a single file for ease of analysis, beginning with the lowest stress case (7.5 kW) as the 
baseline,  and decreasing in power to the highest stress case (0 kW). Figure 7 illustrates the tri-axial 
acceleration data, which are very nonlinear and complex. This data structure is very similar across all of the 
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other load conditions, which are not shown here. 
 
Figure 8 shows the various conventional statistical measures versus TQG load. The top plot shows a 
monotonic rise with increasing TQG load in the minimum, maximum, absolute average deviation, and 
standard deviation. However, this monotonic rise does not show the desired linear change. The middle plot 
shows no consistent change in the skewness (SK), kurtosis (KT), or mean with increasing load on the TQG. 
The bottom plot shows no consistent change in m (time-steps per cycle or TSPC), while Z decreases 
monotonically (but somewhat erratically) with increasing load on the TQG. A summary of these trends in 
Table 1 shows that no CSM provides change in proportion to decreasing load. 
 
Figure 9 illustrates the variation of TNM with TQG load. These plots are shown with error bars of one 
standard deviation, corresponding to ten contiguous, non-overlapping analysis windows (N = 95,550) for each 
TQG load. The top plot shows that correlation dimension varies erratically with TQG load, as does the 
Kolmogorov entropy (middle plot). The first minimum in the mutual information function (bottom plot) rises 
from 0 to 500 W, is flat between 500 and 5000 kW, and rises again from 5 to 7.5 kW. Consequently, the 
TNM do not show a consistent change in TQG stress with decreasing load. 
 
As discussed in Sect. 2, phase-space dissimilarity measures are determined via Eqs. 1- 4 over a broad range of 
parameters, namely: 1 ≤ λ ≤ 100, for both uniform and equiprobable symbols. Double-precision arithmetic on 
our 32-bit personal computers limits the combination of PS dimension, d, and the number of symbols, S, 
according to the expression, S2d ≤ 252, or S ≤ SX = INT(226/d), where the function, INT, converts a decimal 
number to the next lowest integer. Table 2 shows the resultant upper range (center column), SX, which is 
further restricted in these analyses to 2 ≤ d ≤ 10 and 2 ≤ S ≤ 300 (right column) on the basis of previous 
experience15-16. This analysis also uses ten contiguous, non-overlapping analysis windows (N = 95,550) for 
each TQG load, from which the average and sample standard deviation of each PSDM is determined.  
 
A least-squares linear fit is used to determine the sensitivity (slope of the fit) of each dissimilarity measure to 
the change in TQG power. A second measure of the fit is the sum of squares (SSQ) of the differences between 
the fit and the dissimilarity measures. Figure 10 shows a plot of the sum of the slopes from this fit versus the 
corresponding SSQ value. The points along the upper left boundary of this plot are the best fits, namely the 
largest sum-of-slopes for a given SSQ-value. Figure 11 shows the best set of renormalized dissimilarity 
measures for the set of analysis parameters (d = 3, S = 240, λ = 48, and equiprobable symbols). All of the 
dissimilarity values are within one standard deviation of the straight-line fit. This parameter set also provides 
a monotonic change in the dissimilarity measures with TQG power; the sole exception to this constraint is a 
non-monotonic change in χn

2 from 0 to 500W (upper left portion of the top plot). This more consistent change 
in phase-space dissimilarity measures is in contrast to the inconsistent changes in the conventional statistical 
measures and in the traditional nonlinear measures, as discussed in the preceding paragraphs. These results 
satisfy the third objective of this work. Namely, the consistent change in phase-space dissimilarity measures is 
proportional to the operational stress under non-ideal operation, indicating degradation in machine 
performance that is proportional to the operational stress. No failure occurred in the present TQG data, so the 
fourth objective (forewarning of failure) could not be tested by the present analysis. 
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5. CONCLUSIONS 
 
This work analyzes vibration power for comparison conventional statistical measures (CSM), traditional 
nonlinear measures (TNM), and phase-space dissimilarity measures (PSDM) as indicators of condition 
change in the Army’s Tactical Quiet Generator. Recent work by our team showed very similar results for 
other machines and types of data16. Namely, the PSDM provide a more consistent correlation with fault 
progression, then the CSM and TNM22. Table 3 summarizes recent results for forewarning of seeded (S) faults 
and accelerated (A) failures in various machines and equipment; starred (*) entries had multiple repetitions of 
the same experiment to demonstrate reproducibility. CSM include minimum, maximum, average, sample 
standard deviation, skewness, kurtosis, average time steps per cycle, and first zero in the auto-correlation 
function. The TNM include first minimum in the mutual information function as a measure of decorrelation 
time, correlation dimension as a measure of complexity, and Kolmogorov entropy as a measure of 
information loss rate. PSDM are the χ2 statistic and L1 distance between the time-delayed reconstructions of 
the PS-distribution functions.  
 
PSDM show more consistently better discrimination power for machine prognostication, than either CSM or 
TNM. The reason for the improved performance of PSDM is rather simple. CSM and TNM compare 
averages, while PSDM are the sum over the absolute difference between the two phase-space states. In 
addition, the enhanced discrimination power facilitates use of PSDM on noisier data. The sensitivity and 
robustness of PSDM depend both on the data quality and on the phase-space reconstruction parameters. 
Indeed, (i) data quality can be improved by removal of (known) confounding artifacts from the signal, and (ii) 
reconstruction parameters can be chosen much closer to their optimal values. Without this information, one 
must resort to a trial and error procedure, which requires a search over a large subset of the parameter space to 
obtain the best indication of condition change. 
 
Finally, we mention that this same approach provides forewarning and detection of various biomedical 
events1-15. One implementation of this ORNL technology is a hand-held, wireless device (personal digital 
assistant, PDA) that acquires and analyzes the data for event forewarning. Since the same approach quantifies 
condition change for both the biomedical and the machine applications, this hand-held platform can be readily 
adapted for TQG prognostics. 
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Table 1: Summary of trends in CSM from Figure 8 
Conventional statistical measure Trend 

Minimum, an Monotonic, but not linear 
Maximum, ax Monotonic, but not linear 
Standard deviation, σ Monotonic, but not linear 
Absolute average deviation, AAD Monotonic, but not linear 
Skewness, SK None 
Kurtosis, KT None 
Mean None 
First zero in auto-correlation function, 
Z 

Monotonically 
decreasing 

Time steps per cycle, TSPC None 
 
 
 
 
 
 

Table 2: Range of phase-space symbols, S, versus phase-space dimension, d 
        d 2 ≤ S ≤ SX 2 ≤ S ≤ SX’ 
    2 
    3 
    4 
    5 
    6 
    7 
    8 
    9 
   10 

 8192 
  406 
   90 
   36 
   20 
   13 
    9 
    7 
    6 

  300 
  300 
   90 
   36 
   20 
   13 
    9 
    7 
    6 

   11 
   12-13 
   14-16 
   17-26 

    5 
    4 
    3 
    2 

not used 
not used 
not used 
not used 
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Table 3: Summary of recent machine failure forewarning results 
 

Data Provider  Equipment and Type of Failure   Diagnostic Data 
1) EPRI (S)  800-HP electric motor: air-gap offset   electrical power23  
          vibration power16 

 
2) EPRI (S)  800-HP electric motor: broken rotor   electrical power23 

          vibration power16 

 
3) EPRI (S)  500-HP electric motor: turn-to-turn short  electrical power23 

          vibration power16  
 
4) Otero (S)  ¼-HP electric motor: imbalance23   acceleration 
 
5) PSU/ARL (A)* 30-HP motor: overloaded gearbox23   load torque23  
          electrical power23 

          vibration power16 

 
6) PSU/ARL (S) crack in rotating blade16    motor power  
          vibration power 
 
7) PSU/ARL (A) motor-driven bearing16    vibration power  
 
8) ORNL*  failure of laboratory structural samples18-20, 25 stress and strain 
 
9) ORNL              machine tool chatter26                                      acceleration   
_______________________________________________________________________________ 
Starred (*) entries had multiple repetitions of the same experiment to demonstrate reproducibility. 
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Figure 1:  Pictures of the U.S. Army’s Tactical Quiet  Generator (TQG), showing an external view 
(top left); an interior view (top right); another interior view (bottom right), including a portion of the 
generator enclosure in the lower right corner of the picture; and the accelerometer location on the generator 
enclosure (bottom left) with the yellow arrow pointing to the accelerometer. Pictures are courtesy of the U.S. 
Army Research Laboratory.  
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Figure 2: TQG electrical data for 500-watt load (voltage in left column, amperes in the center 
column, and watts in the right column) over various time scales that decrease from top to bottom to display 
the underlying structure. Note the classic sinusoidal variation in each signal, as well as the large-amplitude, 
nonlinear, complex “noise” component in the current and power. 
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Figure 3: TQG electrical data for 2500-watt load (voltage in left column, amperes in the center 
column, and watts in the right column) over various time scales that decrease from top to bottom to display 
the underlying structure. Note the classic sinusoidal variation in each signal, as well as the modest-amplitude, 
nonlinear, complex “noise” component in the current and power. 
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Figure 4: TQG electrical data for 5000-watt load (voltage in left column, amperes in the center 

column, and watts in the right column) over various time scales that decrease from top to bottom to display 
the underlying structure. Note the classic sinusoidal variation in each signal, as well as the smaller-amplitude, 
nonlinear, complex “noise” component in the current and power. 
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Figure 5: TQG electrical data for 7500-watt load (voltage in left column, amperes in the center 
column, and watts in the right column) over various time scales that decrease from top to bottom to display 
the underlying structure. Note the classic sinusoidal variation in each signal, as well as the small-amplitude, 
nonlinear, complex “noise” component in the current and power. 
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Figure 6: TQG electrical data for 10-kW load (voltage in left column, amperes in the center column, 
and watts in the right column) over various time scales that decrease from top to bottom to display the 
underlying structure. Note the classic sinusoidal variation in each signal, as well as the low-amplitude, 
nonlinear, complex “noise” component in the current and power. 
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Figure 7: TQG acceleration no-load data (three orthogonal a-components in the left columns, and 
vibration power in the right column with all signals in the same arbitrary units) over various time scales that 
decrease from top to bottom to show the underlying structure. Note the complex, nonlinear features in all of 
the data channels. Acceleration data for other loads have very similar structure, and are not shown. 
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Figure 8: Various conventional statistical measures as a function of power-load on the TQG, 
showing: (a) absolute average deviation, AAD/500 (black -.-), standard deviation, σ/104 (green --), minimum 
in the signal, -an/104 (solid blue), and maximum in the signal,  ax/104 (red --); (b) kurtosis, KT (green -.-), 
20*skewness, SK (black --), and 20*mean (solid blue); and (c) time steps per cycle, TSPC (solid blue) and 
first zero in the auto-correlation function, Z (black --).  
 
 



 28

0 1 2 3 4 5 6 7 8

1.85

1.9

1.95

2
D

(a)

0 1 2 3 4 5 6 7 8

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

(b)

K
 (B

IT
S

/s
)

0 1 2 3 4 5 6 7 8
10

10.5

11

11.5

12

(c)

M
1

POWER (kW)
 

 
Figure 9: Traditional nonlinear measures versus TQG load: (a) correlation dimension, (b) 

Kolmogorov entropy, and (c) first minimum in the mutual information function. Error bars in each case 
correspond to one standard deviation. Note that the error bars in the correlation dimension (top plot) and first 
minimum in the mutual information function (bottom plot) are very small or zero, and consequently appear as 
a single horizontal line. 
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Figure 10: Sum of PSDM slopes versus least-sum-of-squares (SSQ) by a straight-line fit for an 
exhaustive search over 154,400 different parameter sets. This plot shows only 26,700 of those points, 
corresponding to proportionate change in the PSDM with TQG power. The best fits occur along the upper left 
boundary (corresponding to the largest slope for a specific value of the sum of squares), which is highlighted 
in red. See text for discussion. 
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Figure 11: Plot of phase-space dissimilarity measures (and the associated error bars for one sample 
standard deviation) versus TQG power, where 7.5 kW corresponds to the baseline. The phase space 
parameters for this case are: d = 3, S = 240, UE = 1 (equiprobable symbols), and μ = 48. 
 
 
 
 



 

 

ORNL/TM-2007-8634 
 

INTERNAL DISTRIBUTION 
 

1. L. M. Hively 
2. J. P. Trien 
3. B. A. Worley 
4. Central Research Library 
5. ORNL Laboratory Records-RC 

6. ORNL Laboratory Records-OSTI 
 

 
 
 

 
 

EXTERNAL DISTRIBUTION 
 

7.   U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland, 20783-1197  
Attention:  AMSRD-ARL-SE-RU (A. Bayba) 
Attention:  AMSRD-ARL-SE-RU (M. Conn) 
Attention:  AMSRD-ARL-SE-RU (L. Currano) 
Attention:  AMSRD-ARL-SE-RU (R. Del Rosario) 
Attention:  AMSRD-ARL-SE-RU (H. Khatri) 
Attention:  AMSRD-ARL-SE-RU (G. Mitchell) 
Attention:  AMSRD-ARL-SE-RU (K. Ranney) 
Attention:  AMSRD-ARL-SE-RU (S. Stratton) 
Attention:  AMSRD-ARL-SE-RU (K. Tom) 
Attention:  AMSRD-ARL-SE-RU (D. Washington) 

8.   U.S. Army Research Laboratory VTD, NASA Glenn Research Center, 21000 Brookpark Road, 
M.S.23-3, Cleveland, Ohio, 44135                                                                                                    
Attention:  T. Krantz 
Attention:  D. Lewicki 

9. Selma Matthews, Senior Research Scientist, CERDEC Command and Control Directorate, 
AMSRD-CER-C2-AP-PT, 10108 Gridley Road, Suite 1, Fort Belvoir, Virginia, 22060-5816 

 


