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Abstract
One of the most importantproblems in time-series

analysis is the suitable characterization of the
dynamics for timely, accurate, and robust condition
assessment of the underlying system. Industrial
applications involve prognostication of machinefailures,
thus reducing costly machine repairs, avoiding complete
breakdown with potentially catastrophic effects, and
decreasing concomitant machine failures and human
down-time. Biomedical applications include detection
and forewarning of abnormal physiological behavior
to avoid (or at least reduce) the harmful effects of
various medical crises, decrease patient hospitalization,

and lower costs of health care and lost productive time.
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Both machine and physiological processes display complex, non-
stationary behaviors that are affected by noise and may range from (quasi-)
periodic to completely irregular (chaotic) regimes. Nevertheless, extensive
experimental evidence indicates that even when the systems behave very
irregularly (e.g., severe tool chatter ,or cardiac fibrillation), one may assume
that - for all practical purposes - the dynamics are confined to low
dimensional manifolds. As a result, the behavior of these systems can be
described via traditional nonlinear measures (TNM), such as Lyapunov
exponents, Kolmogorov entropy, and correlation dimension. While these
measures are adequate for discriminating between clear-cut regular and
chaotic dynamics, they are not sufficiently sensitive to distinguish between
slightly different irregular (chaotic) regimes, especially when data are noisy
and/or limited Both machine and physiological dynamics usually fall into this
latter category, creating a massive stumbling block to prognostication of
abnormal regimes.

We present a recently developed approach that more efficiently captures
changes in the underlying dynamics. We start with process-indicative, time-
serial data, recognizing that some data capture most aspects of the dynamics,
while other data may not. The data are checked for quality and discarded if
inadequate (e.g., lost data points, intervals with unchanged signal amplitude,
excessive periodic content, excessive noise, saturation at high or low limits,
and inconsistent signal amplitude across datasets in a test sequence).
Acceptable data are filtered to remove confounding artifacts (e.g., sinusoidal
variation in three-phase electrical signals or eye-blinkY and scalp muscular
activity in EEG). The artifact-flltered data are then used to recover the
essential features of the underlying dynamics via standard time-delay, phase-
space reconstruction. One of the main results of this reconstruction is a
discrete approximation of the distri.bution function (DF) on the attractor.
Unaltered dynamics yield an unchanging geometry of the attractor and the
visitation frequencies of its various points, corresponding to the baseline DF.
Condition change is established by comparing the baseline DFs to subsequent
test-case DFs via new, phase space dissimilarity measures (PSDM), namely
the LJ distance and i statistic between two DFs. A clear trend in the
dissimilarity ,measures over time indicates substantial departure from the
baseline dynamics, thus signaling condition change. The severity of this
departure can be interpreted as a "normal" fluctuation, abnormal behavior,
impending failure, or complete breakdown.

We illustrate the new approach on an assortment of machinery and
biomedical examples. The machine data were collected from laboratory tests of
various industrial equipment for diverse failure modes via seeded faults and
acceleratedfailures. The biomedical applications involve detection ofphysiological
changes, such as epileptic seizures from EEG; ventricularfibrillationJainting, and
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sepsis onset from ECG; and breathing difJiculty from chest sounds. The PSDM
show a consistent discrimination of normal-ta-abnormal transitions, allowing
earlier, more accurate, and more robust detection of the dynamical changefor all
of these applications in comparison to TNM

1. Introduction
Response to an abnormal event (e.g., condition-based or predictive

maintenanceof machines,and treatmentof a patient) relies heavily on analysis
of noisy data. The major roadblocks to accurate, timely, and robust
prognosticationinclude [1]: (a) incompleteunderstandingof event evolution to
the abnormal state; (b) lack of predictive methodologies for unsteady
signatures; (c) ignorance about controlling parameters; and (d) unavailability
of test facilities to emulate a real, operational industrial environment, or
inappropriateness of such tests in humans. Our present approach is far from
proposing a complete and universally applicable solution to this problem, but
does offer a partial solution. In particular, we address items (a)-(b) by
quantifying the (non-stationary)condition change as a sequence of nonlinear
statistical signatures; item (c) by associating change in the controlling
parameterwith the response of the equipmentor biomedicalprocess; and item
(d) by tests that resemblein-plant operationsand use of real physiolog~caldata
for the biomedicalendpoint.

Machine dynamics [2-27] has a long history [11]. Metal cutting forces
during machinetool chatterhave long been recognized as "very complex" and
''very far from sinusoidal," implying nonlinear dynamics [23]. Tlusty[12, 18-
20] published extensive experimental (in)stability diagrams for turning,
milling, boring, hobbing, and planing. Qu et al. [16] used nonlinear measures
to diagnose dynamics, using vibration data from rotating machinery (turbo-
generator and compressor).Bukkapatnam et al. [3] analyzed data from lathe
cutting and found low dimensional, chaotic features. Our previous work
focused on the nonlinear dynamicsof machine tool chatter [28, 29], and used
phase-space (PS) dissimilarityto detect condition change in various physical
processes,namely:distinguishingdifferentdrilling conditions(tool wear) from
spindle motor current of a machining center; distinguishing (un)balanced
centrifugal puntp states from electrical motor power; and forewarning of a'
bellows coupling failure in a rotating drive train from motor current. [30] Our
more recent work used phase-space dissimilarity to determine condition
change in machines due to seeded faults and accelerated failure progression
[31-33]. Delogu, Rustici, and coworkers found hyperchaos [34] and
intermittent chaos [35] in ball milling. Pfeiffer's analysis [36] showed that
bifurcations and chaos may be generated by various mechanical process.es,
such as stick-slipdue to dynamic/staticfriction and surface impacts;additional
processes include surfacedeformationand material removaVwear[12, 18,20].

II
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Characterization of change in physiological processes is even more
vexing, displaying the same confounding features of non-stationarity,
nonlinearity, multiple time scales, and strong sensitivity to environmental
perturbations,with the added challengeof the enormoOscomplexityof a living
organism. As an illustration of the status of biomedicalprognostics, we shall
briefly describe recent work on prediction of epileptic events. Early work on
predictionof epilepticseizures began in the 1970s[37], expandingrapidly over
the last decade, due to digital electroencephalographic(EEG) technology and
advances in nonlinear dynamics [38-44]. Babloyantz and Destexhe [45] and
Babloyantz [46]suggested that EEG data have noisy deterministicfeaturesthat
produce diverse behaviors, including chaos, although some investigatorshave
challenged this idea [47-49]. The Journal of Clinical Neurophysiology
published a recent issue (May 2001) on epilepsy prediction [50-55].Litt and
Echauz [56] reviewed this research in May 2002, including time- and
frequency-domainanalysis, nonlinear dynamics and chaos, as well as neural
networks and other artificial intelligence approaches. IEEE Transactions on
Biomedical Engineering published a focus issue (May 2003) on prediction of
epilepsy [57-68].Typicalmeasures for prediction includethe largestLyapunov
exponent [61], synchrony [57], correlationintegral [65], and various time- and
frequency-domainfeatures ofEEG energy [58].These results are mostly based
on analysis of intracranialEEG.

To date, most of the effort on condition change assessment and
forewarning has focused on Fourier spectra, conventional statistical measures
(CSM), and traditional nonlinear measures (TNM), such as Kolmogorov
entropy, correlation dimension, and Lyapunov exponents. While these
descriptors discriminate adequately between clear-cut regular and chaotic
dynamics, they are not always sufficiently sensitive to distinguish between
slightly different chaotic regimes, especially when data are limited and/or
noisy. This lack of discrimination arises from averaging over the global
dynamics, which erases most of the dynamical details. Indeed, our initial
analysis of machine data [28] and EEG data [69] used TNM, yielding
inconsistent detection and event forewarning. Those results indicated that
detection of meaningful information in attenuated, noisy, artifact-infested
signals requires more sensitive and discriminatingmeasures.

We addressed these limitations by defining new measures to quantify
change in time-serial data, which are convertedto a discrete geometric (phase
space) representation. A distribution function describes the visitation
frequency and sequence of the discrete phase-space states; (un)changing
dynamics lead to an (un)altered distribution function. Dissimilarity measures
quantify changebetween test case and baselineDFs. Large dissimilaritymeans
that the system is far from the baseline, as a forewarning of an abnormal,
possibly catastrophic event. A comparison of the results shows a significant
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and consistent superiority of the new measures over the TNM for detection and
forewarning of condition change in both machinery and physiological data.
Indeed, the PSDM have consistently better sensitivity and discrimination
power for event forewarning than TNM for machines [70] and biomedical
data [71]. .

. The remainder of this paper is organized as follows. In Section 2 we
review briefly the traditional statistical and nonlinear measures used to
characterize change in time serial data. We then present our methodology and
the associated PSDM including a recently developed [32] statistical test for
failure forewarning and onset. Section 3 and 4 present our results for various
machine and physiological data, respectively. Section 5 summarizes the results
and presents our conclusions.

2. Approach
. Machineprocessesdisplayrich dynamics,includingquasi-periodicity,

nonlinearity, and occasional chaos. To carry out the analysis, we assume that:
(i) the underlying dynamics are essentially deterministic; (ii) the processes
behave as a low-dimensional nonlinear, possibly chaotic dynamical system;'
(Hi) one channel of data can capture the main features of nonlinear dynamics.
Phase-space reconstruction of multi-channel data is also possible and, indeed,
preliminary results [72] support the assumption that multi-channel data provide
more robust forewarning than single channel data. A thorough investigation of
these aspects will be pursued in the future.

Several practical caveats are related to the amount of data and its quality.
For example, an insufficient amount of time-serial data may not adequately
sample the attractor, thereby degrading the sensitivity of the dissimilarity
measures [54, 73]. Likewise, the data sampling rate, /., must be much faster
than the machine dynamical rate, v, which in turn must be much larger than the
inverse of the time, T, to failure:/.» v» liT. We assure the validity of this
assumption by requiring that the first minimum in the mutual information
function occur at four (or more) time steps. Usually, the analysis is confounded
by artifacts in the data. Based on a priori information about the underlying
dynamics, we remove such artifacts (e.g., sinusoidal variation in three-phase
electrical power; resonant oscillations in vibration power; low-frequency,
muscular activity in physiological data from eye-blinks and breathing). Also,
parameters for the phase-space reconstruction must be chosen carefully for
robust and sensitive indication of condition change. This part of the

methodology is still quite analyst-intensive; practical (analyst independent)
prognostication must be less dependent on interaction with or guidance from
the human expert. Moreover, the applicability of the present methodology has
been limited to retrospective analysis of archival data for seeded faults,

. accelerated failures, and biomedical events, which are well characterized under
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appropriate test conditions. The separation between the present state of our
methodology and the real-world needs is still large and will require substantial
additional development, since practical applications will definitely require
prospective analysis of (near- )real-time data.

The general approach is outlined next. We first acquire a process-indicative
scalar signal, e, which is sampled at equal time intervals, 't, starting at an initial
time, to,yielding a time-serial sequence of N points, e/ = e(to + i1:).We call each
contiguous, non-overlapping interval of N e,-values a cutset. We remove artifacts
from the data with a zero-phase quadratic filter [69, 75, 76] that performs better
than conventional filters. This filter uses a moving window of 2w+1 points of
data, with the same number of data points, w, on either side of a central point.
We fit a parabola in the least-squares sense to these data points, and use the
central point of the fit to estimate the low-frequency artifact, fl. The residual
(artifact-filtered) signal, g; = e; - fl,.has essentially no low-frequency artifact
activity. All subsequent analysis uses this artifact-filtered data, g/.

We convert each artifact-filtered value, g;, into a symbolized value, Sj,
namely one of S different integers, 0,1,. . . , S - 1. Equiprobable symbols are
formed by ordering all N of the base case artifact-filtered time-serial data
points from the smallest to largest value. The first N/S of these ordered values
correspond to the first symbol, O. Ordered data values (N/S) + 1 through 2N/S
correspond to the second symbol, 1, and so on. Equiprobable symbols have
non-'uniform partitions in the signal amplitude with the same occurrence
frequency of g/ values by construction, and thus have no information about the
PS structure. In contrast, symbols with uniform partitions (uniform symbols)
have inherent dynamical structure before beginning the PS reconstruction.
Thus, one advantage of equiprobable symbols is that dynamical structure arises
only from the PS reconstruction, as described below. Moreover, large negative
and large positive values of g; have little effect on equiprobable symbolization,
but dramatically change the partitions for uniform symbols. Information
theoretic measures of the PS-DF (e.g., mutual information function) are
smooth functions of the reconstruction parameters for equiprobable symbols, .

but are noisy functions of these same parameters for uniform symbols.
Consequently, equiprobable symbols sometimes provide better discrimination
of condition change than uniform symbols.

2.1 Conventional statistical measures (CSM)
CSM have long been used for general characterization. The most common

statistical measures are the mean: g = L/ g/N, where the sum over i, L/, spans
all N of the points in the analysis window, and the sample standard deviation,
cr,which is defined as: cr2= L; (g/- g )2/(N - 1). Higher moments about the mean

include skewness: s = L/ (g/- g)3INcr3, and kurtosis, k = L; (g/- g)41Ncr4 - 3.
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A large positive (negative) value of skewness corresponds to a longer, fatter
tail in the distribution about the mean to the right (left). Kurtosis measures the
amount of flattening (k < 0) or excess peakedness (k >0) about the mean.
Another measure is the average number of time steps per wave cycle

(frequently used in engineering analysis of sampled data): m = NI[(ne - 1)/2] ~

Wine, for ne»1 Here, ne is the average number of mean crossings, and two
successivemean crossingsdelimit one-halfof a wave period. The first zero in
autocorrelation function, defined by AU) = L; (g; - g)(gi+j - g) I (N - j)cr2, is

also a useful measure. While CSM are useful in the analysis of linear
processes, they provide inconsistent discrimination for detection of condition
change in nonlinear systems. We include them here for completel}essand
comparison.

2.2 Traditional nonlinear measures (TNM)
The advent andrapid developmentof nonlinear and chaotic dynamics over

the last few decades has produced new and powerful measures for
characterization via PS reconstruction [39, 42, 43], which uses time-delay
vectors that are formed from the (symbolized) s,-data, y(i) = [s/,Si+1o., . . . , S/+(d-1)1o.]'
The choice oflag, f...,and embedding dimension, d, determines how well the PS
reconstruction unfolds the dynamics. Too high an embedding dimension could
result in overfitting of real data with fmite length and noise. Moreover,
different observables of a system contain unequal ainounts of dynamical
information [77], implying that PS reconstruction could be easier from one
variable, but more difficult or impossible from another. Our analysis seeks to
balance these caveats for finite-length noisy data.

We use the term, "traditional nonlinear measures" (TNM), as distinct from

the phase-space measures in the next subsection. We choose three of the most-
frequently-used TNM, as potential indicators of dissimilarity, namely: (i) the
first minimum in the mutual information function as a nonlinear measure of
decorrelation time, (ii) the correlation dimension as a measure of complexity,
and (Hi) the Kolmogorov entropy as a measure of predictability. We describe
these measures next, with more detailed definitions and characterizations in the
references cited below.

The mutual information function (MIF) measures average bits of
information that can be inferred from one measurement about a second, as a
function of the time delay between the two signals. Shannon and Weaver [78]
developed the MIF, which was later applied to time series. [79] The first
minimum in the MIF, Mh is an average de-correlation time. The MIF is: f(q, r)

= fer, q) = H(q)+ H(r) - H(r, q), where H is entropy: H(q) = -L/ P(qi)
10~[P(ql)]and H(q, r) = -L; P(q;, rj) log2[p(q;,rj)]' One set of signals is Q =
{qh q2,' . , qN},with associatedoccurrenceprobabilities,P(ql)' P(q2)" . . ,
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P(qN)' A second'set of measurements is R = {rh r2,. . . , rN}' with a time
delayrelative to Q, and with occurrenceprobabilitiesP(rl), ,P(rN).P(q/,rJ)
is the joint probability that both states occurtogether.

The maximum-likelihoodcorrelation dimension [80, 81] is: D = -M{~
InW>yloo- 0,,/00)/(1- o,,/oo)]}-I, where M is the number of randomly-sampled
pairs of phase-space points. The maximum-normdistance between PS-point
pairs, i andj, is olj = max(O~k ~ m-I) Ig/+k- ~+kl,where m is the average
number of data points per cycle, as defined above. The distance Onis the scale
length that is associatedwith noise. Distances are normalizedwith respect to a
nominal scale length, bO,as a balance between sensitivity to local dynamics
(typically at bO~ 5a) and avoidanceof excessivenoise (typicallyat bO~a). The
symbol a denotes the absolute average deviation as an indicator of variability
[81],a=~tlg/- gl/N. .

The Kolmogorov entropy (K-entropy),K, is the rate of information loss
per unit time (bits per second), and is the sum of the positive Lyapunov
exponents. Positive, finite K is generally viewed as a clear indication that the
process manifests chaotic dynamics.Extremelylarge entropyvalues indicate a
stochastic (totally unpredictable)phenomenon.K is estimatedfromthe average
number oftime steps, b" for two PS points, initiallywithin 0 ~ bO,to divergeto
0> 00. We use the maximum-likelihoodform of Schoutenet al. [81],K =-Is
10g(l- 1//2.),with /2.= ~/ b/Mfor Mpoint pairs. The data-samplingrate isls.

TNM capture nonlinear dynamical features, but do not offer a very
sensitive tool for detection of dynamical change. The main reason is that
TNM, like CSM, are expressed as a sum (or integral)over (a region of) the PS,
which averages all dynamical details into one number. Consequently, two
(very) different dynamical regimes may lead to very close, or even equal
measures. Moreover, the usual definitions of K-entropy and correlation
dimension are in the limit of zero scale length. However, all real data have
noise, and even noiseless model data is limited by the finite precision
computations.Thus, we use a finite length scale that is larger than the noise (bO
=2a), at which to report the values of K and D. Consequently, our values of K

and D do not capture dynamical complexity at length scales smaller than bO
and have smaller values than expectedfor the zero-scale-lengthlimit (bO-+ 0).

2.3 Phase-space dissimilarity measures
. We addressed some of the limitations ofCSM and TNM as discriminators

of condition change by introducing phase-space dissimilarity measures
(PSDM), [30-33] which we review briefly for the reader's convenience.The
time-delay reconstruction of the symbolized data (as discussed above)
partitions the phase-space (PS) into st hypercubes or bins. By counting the
number ofPS points that occur in each bin, we obtainthe distributionfunction

, '
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(DF) as a discretized density on the attractor. We denote the population of the
jth DF bin, RJ,for the base case (nominal state), and Sj for a test case (off-
normal state), respectively. Comparison of the test case to the base case
involvesmeasuringthe differencebetweenRJwith Sj by the-Istatistic and LI
distance:

x2 ='L(RI -SIr /(RI+S/)'
I

(I)

(2)

L,i,'L\RI -SX
I

The summationsin Eqs. (I) -(2) run over all of the populated PS cells. The-l
statistic is one of the mo~t powerful, robust, and widely used tests for
dissimilarity between two DFs. This -t! is not an unbiased statistic for
accepting or rejecting a null statistical hypothesis, but rather is a relative
measure [76] of dissimilarity between the two DFs. The LI distance is the
natural metric for DFs by its direct relation to the total invariant measure on
the attractor. These measures account for changes in the geometry and
visitation frequency of the attractor. Consistent calculation obviously requires
the same number of points in both the base case and test case DFs, identically

sampled; otherwise the distribution functions must be properly rescaled.
The accuracy and sensitivity of the PS reconstruction can be enhanced by

connecting successive PS points as prescribed by the underlying dynamics,
y(i) ~ y(i + I). Thus, we obtain a discrete representation of the process flow Y(i)
= [y(i), y(i + I)] that is formed by adjoining two successive vectors from the d-
dimensional reconstructed PS. Y(i) is a 2d-dimensional, connected-phase-space

(CPS) vector. As before, R and S denote the CPS DFs for the base case and test
caSe, respectively. We then define the measures of dissimilarity between these
two CPS DFs via the LI-distance and -I statistic, as before [54, 73, 82-84]:

Xe2 = L(Rlk -SjkY I(Rlk +Slk)'
. Jk .

(3)

(4)

Le= 'LIRjk - Slk\'
Ik

The subscript c denotes CPS measures; the subscripts, j and k, denote the

initial, y(i), and final, y(i+ I), PS states, respectively. The value 'A.= 1results in
d...,.1 components ofy(i + I) being redundant with those ofy(i); we allow this
redundancy to accommodate other data such as discrete points from two-
dimensional maps. ~PS measures have higher discriminating power than their
non-connected counterparts. Indeed, one can prove [73] that these measures

satisfYthe inequalities: .l ~ L, '1./ ~ Le,L ~ Le,and'1.2~ Xe2.
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We call the quantities in Eqs. (I) - (4), phase space dissimilaritymeasures
(PSDM).Their definitions allowPSDMto flag transitions betweenregular and
chaotic regimes. They also discriminate well between different chaotic
regimes. Indeed, straightforward methods exist [39, 42, 85] to discriminate
between reg\Jlar and chaotic motion and to detect transition between these
regimes. However, discriminating between close chaotic regimes (e.g.,
Lyapunov exponents, Kolmogorov entropy, correlation dimension, etc. [42,
43]) is almost impossible.The reason for the superior performanceofPSDM is
rather simple: TNM use a differenceof averages,while PSDM use sumsofthe
absolutevalue of differences.

The disparate range and variability of the PSDM make their interpretation
and comparison rather difficult, especially for noisy data. We obtain a
consistent means of comparison via renormalized dissimilarity measures
(RDM) [54, 73], by proceeding as follows. If V denotes a dissimilarity
measure fromthe set, V= {L, Le,X2,and X/}, we obtainthe meanvalue, fl, of
the dissimilarity measure by comparison among the B(B-I)/2 unique
combinationsof the B base case cutsets, with a correspondingsample standard
deviation a). We subsequentlycompare each non-overlappingtest case cutset
to each of the B base case cutsets, and obtain the corresponding average
dissimilaritYvalue, Vi, of the ith cutset for each dissimilarity measure. The
RDM of the measure V is definedas the number of standard deviationsthat the
test case deviates from the base case mean, U(V)= IVi- VI/a).A statistically
significant trend in the RDM indicates abnormal dynamics for event
forewarning. .

The best choice of the parameter set, {N, w, S, d, B, A.},depends not only on
the system, but also on the specific data. We choose a "reasonable" value for the
number, B, of base case cutsets, 5 ::;B ::; 10, as a balance between a reasonably
short quasi-stationary period of "normal" dynamics and a sufficiently long
period for statistical significance. We find that timely forewarning is obscured by
a value for N that is too large, while inadequate statistical sampling of the
attractor occurs if N is too small. Our analysis procerds as follows: (a) choose
the parameter set, {N, w, S, d, A.}; (b) compute the renormalized PS
dissimilarities for the specific data; and (c) systematically search over the
parameters {N, w, S, d, A.},to find the best forewarning indication.

Our previous work [30-33] found that RDM are sensitive measures of
condition change, but that further improvements are needed to give an explicit
indication of machine failure. Thus, we seek a more robust and specific end-of-
life (EOL) forewarning. Extensive application of the PSDM approach [32, 33]
shows that all four of the PSDM display similar trends, as illustrated by the
analysis of the machine data below. This observation suggests the definition of
a composite measure, C/, as the sum of the four renormalized PSDM for the
i-th dataset:

r--
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(5)
C1 = V(X]) + U(x/) + V(L) + V(Le).

This composite measure is expected to be more robust than anyone of the
PSDM, while accurately indicating condition change. The EOL indication
fromthis compositemeasure is then quantifiedas follows. We use contiguous,
non-overlappingwindows of C1to obtain a least-squaresstraight-linefit:

(6)

I
r
I
l
I

YI = 'ai+ b.

The window length of n = 10 values of C/ (and y/ from Eq. (6» is chosen
consistentwith the number of cutsets in each snapshot (B =10). Other values
of B give inferior indication of condition change. Next, the variance, 0'22,
measuresthe variabilityof the C/values about this straight-linefit:

'al=~/(y,-ci/(n-I). (7)

G measuresthe variability of next n values of C/about an extrapolationof this
straight-linefit:

G= ~/ (Y/- Ci/al.

Other fits (quadratic,cubic,.and quartic) extrapolatepoorly outside the fitting
window.

The index, i, in Eqs. (6) - (8) runs over the B values of C/ and y/. The
quantity G is similar to a chi-squared statistic, but we do not use that notation
to avoid confusion with the two X2PSDM. A statistical test for G would
involve (for example)the null hypothesisthat deviationsfromthe straight-line
fit are normally distributed. Analysis of accelerated machine-test data uses
Eqs. (5) - (8) to extract both forewarning and an indication of failure onset.
We presentthe results of this analysisnext.

3. Application to machine data
Without a model, the "correct" choice of process-indicative data can be

justified only a posteriori. As a practical matter, this choice is limited to
measurable process variables. Moreover, the analyst's choice must recognize
that not all observables capture the same amount of information [77]. Typical
data encountered in machine/industrial applications are tri-axial
acceleration,ii, and three-phase electrical current, 1/, and voltage, V,. From
these data, we calculate the instantaneous mechanical (vibration) or electrical

power, p a; ii .J ii dt or ~i I/Vi,respectively.The use of vibration or electrical
power is certainly not unique. Indeed, one component of acceleration (or
current or voltage) may provide an adequate process-indicative signal to
extract condition change. The use of power has the advantage that only one
channel of data is analyzed,rather than analysis of severalchannels (e.g., three

(8)
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channels of acceleration, or six of 11and Vi) to find the best signal for change
discrimination. This paper presents details of the forewarning analysis via
vibration power. Analyses of three-phase electrical power, and individual
channels of current, voltage, acceleration, velocity, and torque are described inRefs. 31 and 33.

For this analysis, the datasets for each test in the sequence were
concatenated into a single long dataset. We verifY data quality by checking for:
the proper number of data points, any intervals with unchanged signal
amplitude, adequate sampling rate, excessive periodic content, excessive noise,
saturation at high or low limits as an indicator of improper data scaling, and
consistent signal amplitude across datasets in the test sequence. Subsequent
analysis uses only data that pass these quality tests.

'The Electric Power Research Institute (EPRI) sponsored work on
predictive maintenance for large motors, simulating common failures via
seeded faults. [86] Present analyses use tri-axial (vibration) acceleration data
from the inboard (IB) motor location, because all data from the outboard motor
location failed the quality check. Data were recorded in 1.5-second snap-shots
at 40 kHz (60,000 points per dataset). Our analysis averages the measures over
five subsets (B = 5) of 12,000 - points.

3.1 EPRI air-gap seeded fault
One EPRI test [86] involvedoperator-imposedair-gap offsets in the rotor-

stator alignment.The test bed was a three-phase, 800-HPsleeve-bearing,form-
wound AlIis Chalmers inductionmotor, rated at 4160 volts and 100 amps at
60 Hz with 10 poles, 94 copper rotor bars, 40 stator slots, runningat a normal
speed of 710 RPM. The first dataset of test sequence involves the motor
running in its nominal state. Two different air-gap offset seeded faults were
then imposed via preinstalledjackscrews. The second dataset imposeda static
inboard air-gap offset of 8 mils from the nominal value of 30 mils. The third
dataset retained the first fault, 'and added a static outboard air-gap offset by
20% in the opposite direction from the inboard spift, resulting in the rotor
being skewed relative to the stator. Figure la shows a 20-milIisecondsegment
of vibration power data with complex, nonlinear features. The corresponding
statistical measures (Figs. Ib-le) and traditional nonlinearmeasures (Figs. If-
Ig) do not provide a clear indication of the increasing severity of the seeded
fault. Figure 2 shows that all four phase-space dissimilarity measures rise
linearly with increasingfault severity,yielding good change discrimination.

3.2 EPRI rotor-bar seeded fault
A second EPRI [86] test involved operator-imposedpartial or total cuts

in the rotor bars. The test bed was the same Allis Chalmersmotor, as in Sec.
3.1. The test sequence beganwith the motor runningin its nominal state (first
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Figure 1. Results for EPRI air-gap offset seeded fault: (a) vibration power (P)
versus time (milliseconds); (b) minimum (PN), negative of the absolute average
deviation (-0), standard deviation (0'), and maximum (Px) of P for each test;
(c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e)
first minimum in the mutual information function (M)) and first zero in
the autocorrelation (Z}); (f) correlation dimension (D); and (g) Kolmogorov
entropy (K).
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Figure 2. Plots of the four nonlinear dissimilarity measures for the airgap-offset
seeded-fault trom vibration power with the following phase-space parameters: cf-=3,
S==3,;\,=11. Dataset #1 is for the nominal (no fault) state. Datasets #2-3 are for two
different airgap-offset faults.

dataset), followed by progressively more severe broken rotor bars. The second
dataset involved one rotor bar cross section cut 50% in half at the 11 o'clock
position. The third dataset was for the same rotor bar now cut through 100%.
The fourth dataset was for a second rotor bar cut 100% at the 5 o'clock position,
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Figure 3. Results for EPRI broken-rotor seeded fault: (a) vibration power (P)
versus time (milliseconds); (b) minimum (PN), negative of the absolute average
deviation (-a), standard deviation (cr), and maximum(Px) of P for each test;
(c) skewness (s) and kurtosis (k); (d) number of time steps per cycle (m); (e)
first. minimum in the mutual information function (M,) and first zero in
the autocorrelation (Z,); (f) correlation dimension (D); and (g) Kolmogorov
entropy(10.



Figure 4. Plots of the four nonlinear dissimilarity measures for the broken-rotor seeded-
fault vibration power data versus fault severity (number of broken rotor bars)..Dataset #1
is for the nominal (no fault) state. Dataset #2 is for the 50% cut in one rotor bar. Dataset
#3 is for the 100% cut in one rotor bar. Dataset #4 is for two cut rotor bars. Dataset #5 is

for four cut rotor bars. The PS reconstruction parameters are: d=3, S=130, and A=21.

exactly 1800from, in additionto the first rotor failure.The fifth datasetwas for
two additional rotor bars cut adjacent to the original 11 o'clock bar, with one
bar cut on each side of the original, yielding four bars completelyopen. The
complete test sequence then captured an exponentially growing fault, from

3.4 Analysis of gear-failure acceleration data
The Pennsylvania State University (PSU) operates the Applied Research

Laboratory [87], including the Mechanical Diagnostics Test Bed (MDTB). A
30-HP, 1750-RPM,alternating current (Ae), electric motor drives a gearbox,
which is loaded by a 75-HP, 1750-RPM AC (absorption) motor. A digital
vector drive unit controls the current to the absorption motor for torque
vw;iationup to 225 ft-Ibs. The MDTB can test gear ratios from 1.2:1 to 6:1 in
the 5-20 HP range at 2 to 5 times the rated torque of single and double
reduction industrial gearboxes. The motors and gearbox are mounted and
aligned on a bedplate, which is mounted on isolation feet to prevent vibration
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I j

:

" nominal operation, to Yz, to 1, to 2, to 4 broken rotors bars. Figure 3a shows a
20-millisecond segment of vibration power data with complex, nonlinear
features. 'f.he corresponding statistical measures (Figs. 3b-3e) and traditional
nonlinear measures (Figs. 3f-3g) do not provide a clear indication of the::>2
exponentially-growing severi.ty of the seeded fault. Figure 4 shows that all four
phas-space dissimilarity measures rise linearly with the increasing fault

0.5 1 1.5 2 2.5 3 3.5 -4 severity, thus yielding good change discrimination.

3.3 Analysis of turn-to-turn-short seeded fault data
A third EPRI test [86] involved operator-imposed turn-to-turn shorts in a

motor. The test bed was a three-phase, 500-HP, sleeve-bearing, form-wound
General Electric induction motor, rated for 4,000 volts at 60 Hz, with 84
rectangular copper rotor bars, 6' poles, and 108 stator slots, running at a

o , , . I I nominal speed of 1,185 RPM. The first dataset was from the motor, running in, . "
its nominal state. A second dataset involved a turn-to-turn (2.70-ohm) short byo .0.5 1 1.5 2 2.5 3 3.5 -4

I installing a large screw between two turns. A third dataset involved a more

:

I, , ' I severeturnto-turn (1.35-ohm)shortby installing a smaller screw between twor
turns. The analysis sequence goes from largest turn-to-turn resistance (infinite
resistance, corresponding to no short), to smaller (2.7 ohms), to smallest (1.35

::>.2 ohms), corresponding to increasing severity in the fault. Figure 5a shows a 20-

millisecond segment of vibration power data with complex, nonlinear features.

0' , , , , I The corresponding statistical measures (Figs. 5b-5e) and traditional nonlinear, "
measures (Figs. 5f-5g) show some consistency with the increasing severity ofo 0.5 1 1.5 2 2.5 3 3.5 -4

8, the seeded fault. The minimum (PN) rises and maximum (Px) falls (Fig. 5b).
monotonically over the test sequence. Kurtosis decreases and skewness

?:[

increases monotonically (Fig. 5c) over the test sequence. Linear increases
occur in the average number of time steps per cycle (Fig. 5d) over a very
narrow range (7.2-7.6), and the first zero in the autocorrelation function (Fig.
5e). Figure 6 shows that all four phase-space dissimilarity measures rise

0'" , , , , I linearly with the increasing fault severity, thus yielding good change, "
discrimination.0 0.5 1 1.5 2 2.5 3 3.5 -4 I

SEVERITY
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Figure 5. Results for EPRI tum-to-turn seeded fault: (a) vibration power (P) versus
time (milliseconds);(b) minimum (PH),negative of the absolute average deviation (-a),
standard deviation (0"),and maximum (Px) of P for each test; (c) skewness (s) and
kurtosis (k); (d) number of time steps per cycle (m); (e) first minimum in the mutual
information function (Mj) and first zero in the autocorrelation (Zj); (f) correlation
dimension (D);and (g) Kolmogoroventropy (K).

transmission to the floor. The shafts are connected with both flexible and rigid
couplings. Torque limiting clutches on both sides of the gearbox prevent
transmi.ssion of excessive torque during a gear jam or bearing seizure. Torque
cells on both sides ofthe gearbox directly monitor the loads. The protocol for

-- -
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Figure 6. Plots of the four nonlinear dissimilarity measures trom the turn-to-turn short
seeded-fault vibration power. Dataset #1 is for the nominal (no fault) state. Dataset #2
is for the 2.7-ohm short. Dataset #3 is for the 1.35-ohm short. The PS reconstruction

parameters are: d=2, S=6, ')..=57.

this accelerated failure test involves a break-in period at the nominal (IX) load
(530 ft-Ibs) for one hour, followed by twice (2X) or three times (3X) the
normal load, as shown in Table 1 for Run #36, which also includes the time to
failure (Tjai/)'The EOL failures typically include pinion damage, broken teeth,
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Table 1. Summary ofMDTB test results7o.

and a sheared shaft Ten-second snapshots oftri-axial accelerometer data were
sampled at 52 kHz; see Table 1 for the interval (Ll't)between each snapshot.
We convert the accelerometer ,data during the overload period into vibration
power for this analysis. As before, the CSM and TNM show little if any failure I
forewarning, [33] so we do not show them here.

Figure 7 shows that all four PSDM rise systematically (Figs. 7a - 7d) to
provide failure forewarning. Indeed, the abrupt increase in all four PSDM at 160
hours clearly forewarns of the imminent failure. We obtain this forewarning by
quantifying significant deviations from the general trend via application of Eqs.
(5) - (8). Chi-squared statistical tables give a value of G ~ 28.5 for n = 10
degrees of freedom with a probability of one out of the 650 snapshots or (1/650-
1.5 x 10-3).However, we observe many instances of G>28.5 (solid curve in Fig.
7f), arising from dynamical correlations in the accelerometer data, thus violating
the requirement for independent, identically distributed samples.

Instead, we use G as a relative EOL measure. Although G varies
erratically, we observe a systematic trend in the running maximum of G, Gmar,
as shown by the dashed curve in Fig. 7f, neglecting (for example) the first six
G-values to avoid startup transients. This running maximum steadily increases
in modest increments to 376 over the first 159.75, hours of the test, while
intermediate values of G fall well below the running maximum. Subsequently,
a large increase occurs in C1at 160 hours, which produces a correspondingly
large rise in G, and therefore in Gmar. The resulting jumps in Gmarare
quantified by the chain curve (-.-) in Fig. 7f, as the ratio of the current
maximum in G, (Gmar)k, to the previous maximum in G, (Gmar)k-hR =
(Gmar)JJ(Gmar)k-I'G rises to 2,493 at 160 hours, with a corresponding ratio, R =
6.62, while the largest non-EOL ratio is R = 2.22 at 28.5 hours. We find that
the forewarning values of C1across the various MDTB tests are not consistent,
but that the values of Gmarand R consistently provide both forewarning of the
failure and indication of the failure onset, as shown in Table 1: (a) the largest
non-EOL value of R (RNEOL)and the corresponding value of G (GNEOL);(b)
values of R (REoL)and G (GEOL)that indicate the end of life, and the matching
time (TEodh41L); (c) the value of G at failure onset (GoNsEr) and the
corresponding time (TONSE.JTFAIL);and (d) the failure-endpoint time (TFAlL)'

r
I
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Figure 7. Phase-space dissimilarity measures versus time for the MDTB accelerated
failure test (Run #36) from vibration power data: (a) - (d) the four renormalized
PSDM; (e) composite measure, C;, of the four PSDM; (f) end-of-life indicator, G
(solid), running maximum ofG (dashed), and ratio, r, of successive maxima (-.-) in
G. Note that the vertical axis is the loglo of the parameter in subplots (a)-(f), and that
310glo(r)is plotted in (f) for clarity. The phase-space parameters are S=274,d=2, and
A=I,which are identical to those used in previous analysis [32] to show forewarning
consistency.

Run Over- 6 RN/!OL GNEOL REoL GEOL Lm. GONS6T Lmm TI'AIL
load min Tr'" T;',,, hr.

36 2X 15 2.22 376 6.62 2,493 0.985 244,655 0.998 162.50
37 3X 1 1.79 333 8.07 2690 0.956 16284 0.996 8.55
38 3X 1 6.20 374 11.71 13486 0.938 48 379 0.990 4.02
39 2X I 2.32 853 3.89 5231 0.980 5231 0.980 8.60
39 3X 1 2.88 1151 29.03 33415 0.972 44 552 0.994 8.60
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Figure 8. Phase-space dissimilarity measures versus time for the MDTB accelerated
failure test (Run #39 2X portion) from vibration power data: (a) - (d) the four
renormalized PSDM; (e) composite measure, C;, of the four PSDM; (t) end-of-Iffe .

indicator, G (solid), running maximum of G (dashed), and ratio, r, of successive
maxima (-.-) in G. Note that the vertical axis is the loglo of the parameter in subplots
(a)-(t), and that 3IogJO(r) is plotted in (t) for clarity. The phase-space parameters are
S=274, d=2, and 1..=1,which are identical to those used in previous analysis [32] to
show self-consistency.
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Figure 9. Phase-space dissimilaritymeasures versus time for the MDTB accelerated
failure test (Run #39 3X portion) from vibration power data: (a) - (d) the four
renormalized PSDM; (e) composite measure, C;, of the four PSDM; (t) end-of-life
indicator, G (solid), running maximum of G (dashed), and ratio, r, of successive
maxima (-.-) in G. Note that the vertical axis is the IOglOof the parameter in subplots
(a)-(1),and that 3IogJO(r)is plotted in (t) for clarity. The phase-space parameters are
S=274,d=2, and 1..=1,which are identical to those used in previous analysis [32] to
showself-consistency.
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Table 1 also shows results for Runs #37-38. The corresponding plots [33]
are very similar to Fig. 7 and are not shown. Runs #36-38 have largest non-
EOL values: RNEOL= 6.20 and GNEOL = 376. The smallest EOL values are: REOL
= 6.62 and GEOL= 2,493. Thus, limits (for example)of R > 6.4 and G > 1,800
provideEOLforewarning.Moreover,we findthat the largestEOLvalueof
GEOL= 13,486, while the smallest failure-onset value is GONSET=16,284. Thus,
an intermediatevalue (for example)of G > 15,000distinguishesthe EOL from
failure onset forewarning. This approach gives quantitative limits for
transitions from nominal operation (green-light for "go" in a traffic signal
metaphor), to forewarningof failure (yellowlight for "caution"), and to failure
onset (red-light for "stop").

MDTB Run #39 involves a different test protocol: a one-hour break-in
period at nominal load (IX), followed by 2X load for two hours, after which
the load alternates between 3X and 2X loads for ten and five minutes,
respectively. Figures 8-9 show the Run #39 PSDM for the 2X and 3X
overload, respectively. The sawtooth features in each of the subplots
correspondto the transition between2X and 3X loads; the straight-lineportion
in Fig. 8 corresponds to the 2X segment in Fig. 9, and inversely. Run #39
seeks failure forewarningin the presence of load changes. Table 1 shows that
the above limits for G and R also distinguishbetweenthe non-EOL(green) and
EOL (yellow)states for the 3X-portionofthis test, becausethe higher overload'
drives the failure. These limits do not apply to the 2X test, due to the reduced
damage at the lower overload. Unsurprisingly,a different limit of G > 38,000
(for example) distinguishes between the EOL and failure onset forewarnings, .

due to the change in test protocol. The green-yellow-red approach still applies
for this test.

3.5 Analysis of shaft-crack seeded fault
wy analyzed additional PSU seeded-fault data with a progressively

increasing depth of cut at the base of a motor-driven rotor blade. This test
sequence simulatesthe growth of a crack in a turbo-machine,which eventually
causes failure. The rotor is driven at a fixed rotational speed by a fractionaI
horsepower DC motor that was made by Bodine Electric Company, with
typical electrical values of 4 volts and 2 amps. Test data at each depth of cut
were tri-axial accelerations in three orthogonal directions on one bearing
pillow block. The sequencetest states were: (a) nominal operationwjth no cut,
(b) successively deeper cuts through one of eight equi-angularly-spaced5/8"-
diameter shafts that were fixed perpendicularto the rotation axis of the motor-
driven rotor. The cut depths range from 1/16" to 3/8". Figure 10 shows a
resultant segment of vibration power (Fig. lOa), along with conventional
statistical measures (Figs lOb-lOe), and traditional nonlinear measures
(Fig. 1Of- 109).Themagnitudesof minimumand maximumin vibration power
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Figure 10. Results for PSU seeded shaft-crack fault: (a) vibration power (P) versus
time (milliseconds);(b) minimum(PN),negative of the absolute average deviation (-a),
standard deviation (cr), and maximuqI (Px) of P for each test; (c) skewness (s) and
kurtosis (k); (d) number of time steps per cycle (m); (e) first minimum in the mutual
information function (M]) and first zero in the autocorrelation (2]); (1) correlation
dimension(D);and (g)Kolmogoroventropy (K).

(Fig. lOb) are constant, then rise abruptly for the deepest cut. The number of
time steps per cycle (Fig. 10d) rises slowly and monotonically, also showing a

'large increase for the largest cut depth. None of the other measures in Fig. 10
show a consistent change over this test sequence. Figure 11 shows that all four
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Figure 11. The four PSDM versus cut depth for the shaft-crack seeded-fault from
vibration power data. This result is for the best set of phase-space parameters: S=2, d=4,
1..=23,B=10, and N=100,000.

PSDM rise monotol).ically by one-hundred-fold as the cut depth increases from
zero (baseline) to 3/8". These strong indications of change are in sharp contrast
to the weak ones of Fig. 10.
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4. Application to physiological data
4.1 Analysis of EEG data

We present five illustrations of our approach by comparing traditional
nonlinearmeasures(D and K) with phase-spacedissimilaritymeasures ('l and
L,). As discussed in Sect. 2.3, direct comparisonof these measures is difficult
due to their disparate range, variability, and physical meaning. Consequently,
renormalizationof the PSDM allowsmeaningfulcomparisonby defining VIas
the value of each indicator for the ;-th cutset from the set, V = {D, K, '1:, and
L}. The remainder of the RDM analysis remains the same as before.
Dynamicalstatescloseto (farfrom)the baselinehavesmall(large)valuesof .

the renormalizeddissimilarity.
Human electroencephalogram (EEG) data were acquired during clinical

epilepsy monitoring and analyzed by the procedure of Section 2. Figure 12
shows typical results. Raw data in subplot (a) have very complex, non-
periodic features that are typical of brain waves. The seizure event occurred
at 110.7minutes, as denoted by the solid vertical line in subplots (d) and (e).
No seizure event forewarning is provided by the correlation dimension in
subplot (b), or by the Kolmogorov entropy in subplot (c). The isolated peaks
at 42 and 58 minutes in subplot (c) are not significant. An event forewarning
of 27 minutes is provided by U(X2)in subplot (d) and U(L) in subplot (e),
with two (or more) successive occurrences above the threshold of 5 (dashed
horizontal line) at 85 minutes (vertical dashed line). Hively and
Protopopescu [72] give additional details of the methodology for this and
subsequent examples. Our most recent results give a total true rate of 56/60
with up to 5 hours forewarning via analysis of two bipolar EEG scalp
channels. [72] The resultant false-positive rate is more than an order of
magnitudelower than the typical clinically acceptable value. [78]

~,,:.,

<.

4.2 Analysis of ECG data for ventricular fibrillation
Human electrocardiogramECG. data were acquired during ambulatory

monitoring.Figure 13 shows results for a ventricularfibrillationevent at 37
minutes. The raw data in subplot (a) show ten distinct heartbeatsand their
associated quasi-periodic(nonlinear~features. The correlation dimension in
subplot(b) variesrandomly(no forewarningfeatures)with a rise at the fibrillation
event.TheKolmogoroventropyin subplot(c) varieserratically;the isolatedpeaks
occurring at 8 and 24 minutes are not valid forewarningindications. Event
forewarningof 16 minutes(theverticaldashedline) is providedby both U(x2)in
subplot(d) and U(L) in subplot(e); forewarningcorrespondsto two (or more)
successiveoccurrencesabovethe threshold (dashedhorizontalline)by all PSDM.
Similarresults were obtained for several additional datasets.
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Figure 12. Results for human EEG channel 5 of dataset #PVM006, showing time-
serial plots for: (a) 2.4 seconds of raw non-seizure data collected at 250Hz, (b)
correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(X2),and (e) U(L). The
phase-space dissimilarity measures in subplots (d) and (e) are for d = 3, S = 20, I..=
17, and after removal of eye blink artifacts. Each cutset has N = 22,000 points,
corresponding to 88 seconds. We have successfully applied this analysis to over sixty
human datasets.
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Figure 13. Results for human ECG dataset #EC8202, showing time-serial plots for: (a)
10 seconds of raw heart wave data collected at 250 Hz, (b) correlation dimension, D, (c)
Kolmogorov entropy, K, (d) u(i), and (e) U(L). The phase-space dissimilarity
measures in subplots (d) and (e) are for d= 5, S = 3, A.= 27, after removal of breathing
artifacts. Each cutset had N = 18,000 points, corresponding to 72 seconds.

4.3 Analysis of ECG data for syncope
Human ECG data were acquiredduring laboratorytests of fainting

, (syncope), under the following protocol: (i) lying horizontal for 10 minutes,
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(ii) lying in tilted condition (700fromhorizontal)for 40 minutes,and (iii) lying
horizontal again for 5 minutes. Figure 14 (top) shows non-syncopal results
with low values of renormalizeddissimilarity (-10) that increase very slowly
and erratically over the tilt period (slope, A-o.06-0.07 per minute). Figure 14
(bottom) shows syncopal results for the same subject with much larger renormalized

20
d=2,'S=2. ~=83. A=O',070164; Ux=15:52

15

210::>

5

o

d=2,'S=2. ~=83. A=O'.064348; Ux=17:1

35 45 504015 20 25 30
TIME: (MINI

5 10

~~I ~'~-~I
"I-':~~I:p 40 -----

=>
20

00 5 10 15 20 25 30 35 40 45 50
TIME: (MINI

Figure 14. Results for hwnan subject RAY show U(L) and U(Lc) when no syncope
occurs (above the double line), in contrast with U(L) and U(Lc) when syncope does
occur (below the double line). No results for traditionalnonlinearmeasures are shown,
due to their insensitivityin the other examples. The phase-spacedissimilaritymeasures

" are for d =2, S = 2, A.= 83, after removal of breathing artifacts. Each cutset has
N=20,000 points (80 seconds of data at a sampling rate of250 Hz).
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Figure 15. Results for dataset #33209V, showing time-serial plots for: (a) 2.4 seconds
of raw rat heart wave data collected at 500 Hz, (b) correlation dimension, D, (c)
Kohnogorov entropy K, (d) U(X2), and (e) U(L). The phase-space dissimilarity
measures in subplots (d) and (e) are for d =2, S = 2, A.= 80, after removal of breathing
artifacts. Each cutset has N=20,000 points (40 seconds of data).
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dissimilarity (40-70) that increase much more rapidly over the tilt period
(A-G.8-1per minute). The tilt period in this second test was terminated early

" when the subject showed clinical indicators of impending syncope. Similar
results are obtained for a second subject.
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4.4 Analysis of ECG data for sepsis
Heart wave data were obtained via surface chest electrodes from

anesthetized rats subjected to an induced sepsis experiment.After 55 minutes
of normal-state recording, each test rat was exposed to inhaled bacterial
endotoxinthat inducesan inflammatoryresponseandeventuallysepsis.Figure15
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Figure 16. Results from dataset #PTX5, showingtime-serialplots for: (a) 4 seconds of
raw chest sounds data collected at 10 kHz, (b) correlation dimension, D. (c)
Kolmogorov entropy, K, (d) U(j). and (e) U(L). The phase-space dissimilarity
measures in subplots (d) and (e) are for d= 3, S= 30,)..= 20, afterremoval of breathing , .
artifacts. Each cutset has N = 50,000 points (5 seconds of data).
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shows sample results. Raw data in subplot (a) have distinct heartbeats with
additional quasi-periodic (nonlinear) features. No indication of condition
changeis displayedby either the correlationdimensionin subplot (b), or by the
Kolmogoroventropy in subplot (c). The condition change is shown clearly by
both U("I:)in subplot (d) and U(L) in subplot (e), which remains low for the
first 57 minutes, rising abruptly after the exposure onset, remaining high for
the next 26 minutes,then decreasingslowly as the immuneresponsefought off
t~e bioagent effects. This recovery response is consistent with other
physiological observations during the test (not shown). The total true
(negative)positive rate for (un)exposedanimals is (6/6) 17/17.

,?

, 4.5 Analysis of lung sounds
. A surface digital stethoscope acquired chest sounds data during

, experiments on anesthetized pigs to similar pneumothorax wounds. The
baseline state consisted of normal breathing. Subsequent test cases were
obtained by injecting a controlled volume of air (in increments of 100
milliliters up to 1400 milliliters) into the intraplural space, making breathing
increasingly more difficult. Figure 16 shows sample pneumothorax results.
Raw lung sounds data in subplot (a) have very complex features, including
quasi-periodic heartbeats that are superimposed on slow breath-cycle
undulations. The correlation dimension in subplot (b) provides no clear
indication of condition, change. The Kolmogorov entropy in subplot (c)

'likewise varies erratically. Condition change is indicated by both U(Xz) in
subplot (d) and U(L)in subplot (e); both rise to a plateau of 5 over 100-500ml,
then increase to values larger than 20 over 500-1300 ml thereby providing
,r~bust forewarning of the animal's death at 1400 mI. Similar results were
'obtainedfor a secondanimal.

~,'.

5. Discussion and conclusions
We have developed a model-independent method to quantify condition

'change from complex, time-serial data. First, we use a novel zero-phase
quadratic filter to remove confounding artifacts (such as sinusoidal
periodicity from three-phase electrical signals, and eye-blinks or breathing
from biomedical data). The artifact-filtered data are converted into a statistical
distribution function that describes the visitation frequency and sequence ofthe
dynamical states. Dissimilarity measures between baseline and test distribution

. functions (DFs) detect condition change by summing the absolute values of the
differences between DFs. The methodology is quite general, and we illustrate
it~ usefulness by quantifying change for a variety of machine and physiological
events. Success for these diverse applications provides confidence tpat this
approach is useful for detecting condition change in nonlinear and chaotic
processes for both machine and biomedical applications.
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Examples of machine failure forewarning include: detecting balanced.
and unbalanced centrifugal pump conditions from motor power;- [301
distinguishing different drilling conditions from spindle motor current of a
machining center; [301 and predicting failure of a bellows coupling in a
rotating drive train from motor current; [881 discerning the difference in
micro-cantilever vibrations with and without mercury on the sensor;
forewarning of failure in electrical motors (Figs. 1-6) from vibration power
and motor power; [331 and forewarning of failure in motor-driven
components from vibration power (Figs. 7-11) and motor power. [331Table
2 summarizes this recent work on forewarning of seeded faults and
accelerated failures, which were correctly detected in each case. We compare.
conventional statistical measures (CSM), traditional nonlinear measures
(TNM), and phase-space dissimilarity measures (PSDM) as indicators of
condition change. CSM include minimum, maximum, average, sample
standard deviation, skewness, kurtosis, average time steps per cycle, and first
zero in the auto-correlation function. TNM include first minimum in the
mutual information function as a measure of decorrelation time, correlation
dimension as a measure of complexity,and Kolmogoroventropyas a measure
of informationloss rate. PSDM are the -l statistic andLI distancebetWeenthe
time-delayedreconstructionsofthe PS-distributionfunctionsonthe discretized
attractor. PSDM show more consistent and better discriminating power for
timely forewarning of failure or abnormal conditions, than either' CSM or
TNM. The reason for the improved performance of PSDM is rather simple.
CSM and TNM compareaverages,while PSDM are the sum over the absolute
differencebetWeenthe tWophase-spacestates. In addition, the PSDM provide
enhanceddiscriminationof noisy data.

Table 2. Summaryof recent machine failure forewarning.
J2ig~nostic dtlli!
motor power
motor power
motor power
acceleration
load torque
vibration power
vibration pbwer

motor power
vibration power
vibration power
vibration power
vibration power
vibration power
vibration power
vibration power
vibration power
vibration power

- --.-

1,.
!

"
.\
'

l'

I"I
I

Data orovider

I) EPR! (S)
2) EPRI (S)
3) EPRI (S)
4) Otero/Spain (S)
S) PSUI ARL (A)
6) PSU/ARL (A)
7) PSU/ARL (A)
S) PSU/ARL (8)
9) PSUI ARL (A)
10) EPRI(S)
11) EPRI (8)
12) EPRI (S)
13) PSUI ARL (A)
14) PSU/ARL (A)
IS) PSU/ARL (A)
16) PSU/ARL (A)
17) P8U/ARL (8)

Egpioment and /Voe of failure
SOO-HPelectric motor: air-gap offset
SOO.HP electric motor: broken rotor
SOO.HP electric motor: tUm-to.turn short
y..HP electric motor: imbalance
30-HP motor: overloaded gearboX
30-HP motor: overloaded gearbox
30-HP motor: overloaded gearbox'
crack in rotating blade
motor-driven bearing
SOO-HPelectric motor: air-gap offset
SOO-HPelectric motor: broken rotor
SOO.HP electric motor: turn-to-tUrn short
30-HP motor: overloaded gearboX
30.HP motor: overloaded gearboX
30-HP motor: overloaded gearbox
30-HP motor: overloaded gearbOX
crack in rotating blade

~
~2
32
32
32
32
32
32 .
32
32

present work
present work
present work
present work
present work
present work
present work
present work
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Examples of physiological-event forewarning include: brain waves for
forewarning of epileptic events (Fig. 12); surface heart waves for forewarning
of ventricular fibrillation (Fig. 13), and for detection of syncope (Fig. 14) and
sepsis (Fig. 15); and lung sounds for detection of breathing difficulty (Fig. 16).
The dissimilarity measures have small values in the normal state, followed by
significantly larger values above a "normality threshold," indicating abnormal

. dynamics. The results show that the phase-space dissimilarity approach is
sensitive, robust, and timely. PSDM show consistently better forewarning than
either CSM or lliM for physiological applications.

We now have high-fidelity laboratory integration of the technology
elements into desktop-computer software that analyzes noisy, archival data and

. provides indication of condition change. The analysis is much faster than real-
time (e.g., less than 12hours'ofCPU time on a P4 desktop computerto analyze
261 hours of 19-channelBEGdata),[60]and can handlemultiple channels.[72]

We deem these results as encouraging and worthy of continuing
developmentdespite several limitations, which we discuss next. First; we use
all of the data as a training set, limiting the strength of our conclusions.
However, the alternative would involve equally-sized training and test sets.
The resultant training (and test) sets would result in inadequate statistics.
Second, we analyze both the machine and physiologic data from controlled
tests, rather.than an uncontrolled, real-world environment.Third, our results
depend on careful adjustmentof the analysis parameters for the best total-true
rate. Fourth, we analyze only physician-selected portions of the EEG d!\ta,

. rather than the full monitoring period. Fifth, these results are for only a limited
number of datasets (e.g., a total of sixty EEG datasets, forty with epileptic

. eventsfor a singleseizuretype, temporallobe epilepsy).Muchmore data
(hundreds of datasets) are needed for the proper choice of the analysis
parametersas part of a robust aridconclusive statistical validation. These data
requirements are far beyond our present capabilities, and almost everyone

" else's, based on present publications.Sixth, we have not performed
prospective analysis of long-term continuous EEG data, which is the acid test
for any predictive approach. .Seventh, the present analyst-intensive
methodology uses retrospective analysis of archival data on a desktop
computer. Real-world forewarning requires analyst-independent, prospective
analysis of real-time data on a portable device. Clearly, much work remains to
address these issues. Thus, we view the importance of this work as examples
of the overall potential of the methodology, rather than the specific results.

Finally, we note the recent implementation of the PSDM analysis on a
prototypical hand-held device [89] (personal digital assistant), which is much
more appropriate for real-world use. This success provides a portable monitor

. for many new directions for future research and development. Moreover, an
advanced monitor might include a mobile phone and global-positioning system

"
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forewarning of catastrophic health events, as above; monitor for nursing home
and assisted-care residents via EEG, ECG, pulse oximetry, body temperature;
soldier monitor via clothing-embedded sensors for battlefield assessment of the
physiological state; and sports-fitness monitor via ECG and chest sounds to
assess training results in terms of healthy variability. The possibilities are

, manifold for a suitably refined condition-change-indication device.
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to call responders automatically to the event location. These developments
would allow (for example) failure forewarning in critical equipment (e.g.,
motors and motor driven components)at industrial and remote locations (e.g.,
motor-driven turbine-generator at a natural gas pumping station). Many
potential biomedical applications exist: epilepsy diagnosis, pre-surgical
monitoring, out-patient ambulatory forewarning, monitoring for drug trial
efficacy, use in conjunction with function imaging (e.g., tMRl), and use in
conjunction with Vagal nerve simulation for seizure control; stoke detection
via EEG andECG in high-risk individuals; early diagnosis of Parkinson's
disease and other brain disorders;diagnosisof CNSpathologiesvia analysis of
sensory-evokedpotential changes in EEG; diagnosis of head trauma via EEG
changes; hands-free computer control via removal of confounding artifacts
(e.g., eye-blink and other facial muscle activity) from scalp EEG; Cochlear-
implant monitor via analysis of EEG and imposed sounds to evaluate the
brain's processing of signals if hearing is not restored; drug/chemicaleffects
diagnosis via EEG changes; motiondisordermanagementby EEG analysisfor
onset detection, followed by deep brain stimulation and/or trans-spinal drug
infusion; detection of brain ischemia(loss of blood flow) during brain surgery;
drowsiness monitor via extraction of eye-blinks (an indicator of sleepiness)
from scalp BEG; fitness-for-duty monitor for key personnel in high stress
situations via scalp EEG analysis; automated sleep staging of nighttime
polysomnogramdata in outpatients; daytimesleepinessmonitor of ambulatory
outpatients for a sleep disorders; cardiac diagnosis of ambulatoryoutpatients
via ECG analysis on an advanced Holter monitor; forewarning of cardiac
events in ambulatory outpatients; forewarning of cardiac events during
transport by an emergency responder; fetal ECG monitor during labor and
delivery; monitor for prematureand newborn infants with an elevated risk for
cardiovascularevents or sudden infant death syndromevia ECG, EEG, and/or
chest sounds; forewarning of heart valve failure via ECG or chest sounds;
fainting (syncope) monitor via ECG analysis for susceptible patients; shock
monitor via ECG/EEG analysisJor trauma patients; forewarningof impending
rapture of an abdominal aortic aneurism via analysis of ECG, abdominal
sounds, and/or aortic stress-straindata; diagnosisoflung disordersvia analysis
of chest sounds; forewarning/detectionof an asthma attack via chest-sounds;
detection of excessive wear, infection, bone degeneration, and related
abnormalities in patients with orthopedic implants via joint sounds and/or
muscle activity; artificial-heart monitor via analysis of chest sounds and/or
electrical activityto adjust pumping effort for metabolicdemandand forewarn
of pump failure; continuousblood-glucose monitor via skin-mountedoptical-
sensor for automaticcontrolof insulin infusion and/orother therapeuticagents;
personal monitor for dementia-sufferers at home via multiple sensors (e.g.,
EEG, ECG, and chest sounds) to provide early detection of illness and/or
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