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ABSTRACT 
 

We present a robust, model-independent technique for quantifying changes in the dynamics 
underlying nonlinear time-serial data. The changes in the dynamics translate into dissimilarities 
between invariant distributions which are measured via L1-distance and χ2 statistics.  The 
performance of the new measures is tested on model data and applied to various clinically 
evaluated physiological data to detect early signs of transition from normal to abnormal regimes.  
The results show a clear superiority of the new measures in comparison to traditional nonlinear 
measures, in terms of robustness, timeliness, and discriminating power. 
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1. INTRODUCTION 
 
 
Living systems in either normal or pathologic conditions display a rich variety of dynamical 
behaviors.  These behaviors manifest themselves in signals that can be interpreted at various 
levels, such as: physical, chemical, physiological, clinical, etc.  One of the most important 
problems encountered in time-series analysis is the appropriate characterization of changes in the 
system's dynamics.  This problem is particularly vexing in physiological systems, which usually 
are complex, nonlinear, nonstationary, and strongly affected by the environment.  In the last two 
decades, since the advent of chaotic dynamics on the scientific stage ([1, 2, 3, 4] and references 
therein), there has been strongly reenergized interest in interpreting physiological data within a 
dynamical system framework.  The dynamical approach is motivated by several features that are 
shared by physiological and complex physical systems, namely: multiple time scales, 
quasiperiodocity, chaos, and self-organization.  It is therefore reasonable to assume that, under 
certain circumstances, one can use the nonlinear dynamics framework to analyze and interpret 
physiological time series.  This approach is expected to complement traditional medical 
diagnostics, warning, prevention, and cure, with more precisely quantified assessments. 
 
Henceforth, we shall assume that the brain, the heart, the lung, etc., behave like low-dimensional 
nonlinear systems whose dynamics may vary between (quasi-)periodic and completely irregular 
(chaotic) [5, 6]. Thus, global aspects of the dynamics of these organs may be legitimately 
quantified by traditional nonlinear descriptors such as Lyapunov exponents, Kolmogorov 
entropy, and correlation dimension.  While these descriptors are adequate, in general, for 
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discriminating between clear-cut regular and chaotic dynamics, they are not sufficiently sensitive 
to distinguish between slightly different chaotic regimes, especially when data are limited and/or 
noisy.  Therefore, robust and timely forewarning of abnormal clinical events such as epileptic 
seizures, cardiac fibrillation, acute respiratory syndrome, etc., has remained an outstanding 
medical challenge, especially for non-hospitalized patients. 
 
To address this problem, we propose quantification of change in physiological time series by 
defining and using new measures of dissimilarity.  Following standard techniques, our method 
converts time-serial data to a geometric representation that describes the dynamics of the 
underlying nonlinear system (e.g., brain, heart, lung, etc.) on its attractor in the corresponding 
phase space (PS). The frequency and sequence of visitation of various points of the attractor are 
described by a distribution function (DF), which does not change if the dynamics remain 
unchanged. If the dynamics change, the attractor and the DF changes as well. To compare a test 
case DF to the base case DF, we define various distances between the DFs. A large distance 
implies that the system has departed significantly from the base case and can be interpreted as a 
forewarning of an impending abnormal event, possibly a seizure, a cardiac fibrillation, or an 
acute breathing difficulty. 
 
Our method combines several original advances to achieve sensitivity which is at least one order 
of magnitude larger than that obtained to date by competing methods.  First, before constructing 
the phase space distribution, we remove confounding artifacts (such as eye-blinks for the EEG 
signal) with a new zero-phase quadratic filter.  Artifact removal allows detection of dynamical 
change from single-channel data, thereby enabling less invasive, possibly ambulatory, non-
clinical monitoring.  Second, we use differential measures of dissimilarity which preserve a 
much higher content of dynamical information than the traditional measures, which average out 
dynamical changes by integration over large amounts of data.  Third, our technique is rather 
general and applies to various types of clinical data.   
 
The paper is organized as follows. In Section 2 we discuss traditional nonlinear measures for 
time series analysis. Section 3 presents our indicators of dynamical change by comparison of the 
phase-space distribution functions via dissimilarity measures. In Section 4 we present the results 
of our method as applied to model data and clinical physiological time series. We summarize the 
conclusions in Section 5. 
 
 

2. NONLINEAR MEASURES FROM TIME SERIES 
 
 
Our analysis begins with a process-indicative scalar signal, e, collected from a dynamical system 
whose dimensionality and structure are, in principle, unknown. This signal is sampled at equal 
time intervals, τ, starting at time t0, yielding the time series 0( ), 1, 2, , 1.ie e t i i N= + τ = −…   
Usually, physiologic data are affected by artifacts, arising from eye blinks, muscle twitches, etc. 
We remove essentially all of these artifacts with a novel zero-phase quadratic filter [7].  The raw 
data are fitted to a quadratic equation over a moving window of 2w + 1 points with the same 
number of data points, w, on either side of a central point.  The fitted value at this central point is 
taken as the best estimate for the artifact signal, fi.  This filter is applied to the N-point cutset of 
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raw data, ei, yielding 2N w−  points of artifact data. Subsequent analysis uses only the artifact-
filtered data, i i ix e f= − , which is essentially artifact-free. By using the dynamical process 
reconstruction technique [1, 8], this time series is used to find the main features of the underlying 
unknown dynamics, including its dimensionality, topology of the attractor, Lyapunov exponents, 
etc.  The reconstruction proceeds as follows: for a suitably chosen lag λ one forms from the 
scalar time series a d-dimensional time-delay vector, ( 1)( ) [ , , , ],i i i dy i x x x+λ + − λ= …  for a system 
with dimensionality d.  The dimensionality d, which is unknown a priori, is inferred from the 
unfolding of the dynamics during the reconstruction process.  Indeed, the choice of lag, λ, and 
embedding dimension, d, determine whether the data is under-sampled (projected upon itself) or 
redundant; this is particularly important when dealing with a finite amount of noisy data.  We 
note also that different observables of a system contain unequal amounts of dynamical 
information [9] implying that phase space reconstruction could be easier from one variable, but 
more difficult (or even impossible) from another. Our subsequent analysis is mindful of the 
balance between these caveats and the constraints imposed by the limited amount of noisy data. 
 
Based on the PS reconstruction, various nonlinear measures have been defined to characterize 
process dynamics.  As an illustration, we discuss three of these nonlinear measures, namely: (i) 
the first minimum in the mutual information function as a measure of decorrelation time, (ii) the 
correlation dimension as a measure of dynamic complexity, and (iii) the Kolmogorov entropy as 
a measure of predictability.  We note that other nonlinear quantifiers, such as Lyapounov 
exponents, fractal dimensions, etc., have been also proposed and used [5, 6]. 
 
(i) The mutual information function (MIF) is a nonlinear version of the (linear) auto-correlation 
and cross-correlation functions, and was originally developed by Shannon and Weaver [10] with 
subsequent application to time series analysis by Fraser and Swinney [11]. The MIF measures 
the average information (in bits) that can be inferred from one measurement about a second 
measurement, and is a function of the time delay between the measurements. Univariate MIF 
measures predictability within the same data stream at different times. Bivariate MIF measures 
predictability of one data channel, based on measurements in a second signal at different times. 
For the present analysis, we use the first minimum in the univariate MIF, M1, to indicate the 
average time lag that makes xi independent of xj. For a window of N points, we denote by Q the 
set of data measurements q1, q2,…, qN, with associated occurrence probabilities P(q1), P(q2),…, 
P(qN). A second set, R, of data measurements, r1, r2,…, rN, with a time delay relative to the 
measurements in the Q set, has occurrence probabilities P(r1), P(r2),…, P(rN). The function P(qi, 
rj) denotes the joint probability of both states occurring simultaneously. Then the MIF, I(Q,R), 
the system entropy, H(Q) and the relative entropy, H(Q,R), are defined by: 
 

( , ) ( , ) ( ) ( ) ( , ),I Q R I R Q H Q H R H Q R= = + −  
 

i i
i

H( Q ) P( q )log[ P( q )]= −∑  

 
i j i jH( Q,R )) P( q ,r )log[ P( q ,r )].= −∑  

 
H and I are expressed in units of bits if the logarithm is taken in base two. 

(1) 

(2) 

(3) 
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(ii) The maximum-likelihood correlation dimension, D, is defined by [12, 13]: 
 

1
0 0 0{( 1/ ) ln[ / / ) /(1 / )]} ,ij n nD M −= − δ δ −δ δ − δ δ∑  

 
where M is the number of randomly sampled point pairs; δij is the maximum-norm distance 
between the (randomly chosen) i, j point pairs, as defined in Eq. 6 (below). The distance (scale 
length) δn is associated with noise as measured from the time serial data. Note that the distances 
are normalized with respect to a nominal scale length δ0 which is chosen as a balance between 
sensitivity to local dynamics (typically at δ0 ≥ 5 a) and avoidance of excessive noise (typically at 
δ0 ≥  a). Here, the symbol a denotes the absolute average deviation as a robust indicator of 
variability [13] in the time serial data: 
 

(1/ ) | |,
N

i
i j

a N x x
=

= −∑  

 
where x is the mean of xi over a window of N points. The distances δij are defined by: 
 

0 1ij i k j k

max
| x x |,

k m + +δ = −
≤ ≤ −

 

 
where m is the average number of points per cycle. 
 
(iii) The Kolmogorov entropy, K measures the rate of information loss per unit time, or - 
equivalently - the degree of predictability. A positive, finite Kolmogorov entropy generally is 
considered to indicate that the underlying dynamics is chaotic. A very large entropy indicates a 
stochastic, non-deterministic (totally unpredictable) phenomenon. The entropy is calculated from 
the average time for two points on an attractor to pass from a small separation (lower than a 
certain threshold), δ < δ0), to a separation larger than the threshold, δ > δ0), [14]: 
 

1 1 1
M

s i
i j

K f log( / b ), b( / M ) b ,
=

= − − = ∑  

 
where bi is the number of time steps for two points, initially within δ < δ0, to diverge to δ > δ0. 
The symbol fs denotes the data sampling rate, and M denotes the number of PS points in the 
average. 
 
Entropy and correlation dimension usually are defined in the limit of zero scale length. However, 
all real data have noise and even noiseless model data are limited by the finite precision of 
computer arithmetic.  Thus, we choose a finite scale length that is slightly larger than the noise 
(δ0= 2a), at which to report the values of K and D, corresponding to finite-scale dynamic 
structure. Consequently, the values of K and D that we report do not capture the full dynamical 
complexity and have smaller values than expected for the zero-scale-length limit δ0 → 0). 
 

(4) 

(5) 

(6) 

(7) 
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3. DEFINITION OF THE PHASE SPACE DISSIMILARITY MEASURES 
 
 
The traditional nonlinear measures (TNM) described in the previous section characterize global 
features of the nonlinear dynamics and distinguish sufficiently clearly between, say, regular and 
chaotic dynamics. However they do not saliently capture slight dissimilarities between 
dynamical states and therefore cannot distinguish between close dynamical regimes. The same is 
true for other global indicators, such as fractal dimension, Lyapunov exponents, etc. This lack of 
discrimination power occurs because the traditional measures are defined by averaging or 
integrating various quantities against the invariant distribution function over the attractor, 
thereby erasing many of the finer differences induced by the dynamics.  Thus TNM can provide 
only one or a few scalar measures as summary descriptors of complex dynamics. 
 
Greater discrimination is possible, in principle, by more detailed analysis of the reconstructed 
dynamics. In particular, the natural (or invariant) measure (distribution function) on the attractor 
contains more information and provides a more refined representation of the dynamics, insofar as 
it describes the visitation frequency of the various points on the attractor.  Thus, instead of first 
integrating the invariant distribution function (thereby washing out the information it contains) 
and then assess the result, we first compare it with similar functions and then integrate.  This 
approach - which is the crucial point of our method leads to significant enhancements of the 
discrimination power.  To obtain a useful discrete representation of the invariant measure from 
time serial data, we proceed as follows.  We first represent each signal value, xi, as a symbolized 
form, si, that is one of S different integers, 0, 1, …, 1S − : 
 

0 [ ( ) /( )] 1.i i min max mins INT S x x x x S≤ = − − ≤ −  
 
Here, the function INT converts a decimal number to the closest lower integer, and xmin and xmax 
denote the minimum and maximum values of xi, respectively, over the base case (reference data).  
We previously used [15] the minimum and maximum values over both the basecase and testcase 
(data to be tested for departure from the basecase).  However, in real- or near-real-time analyses, 
only basecase extrema are actually known while the testcase extrema are assumed to be equal to 
the former.  We require that si(xi = xmax) = 1S −  in order to maintain exactly S distinct symbols. 
Thus, the phase space is partitioned into Sd hypercubes or bins. By counting the number of 
phase-space points occurring in each bin, we obtain the distribution function as a discretized 
density on the attractor. We denote the population of the i-th bin of the distribution function, Qi, 
for the base case, and Ri for a test case, respectively. The choice of parameters (S, N, d, and λ) 
depends on the specific data under consideration as it reflects the features of the underlying 
dynamics. 
 
We next compare the distribution functions of the testcase and basecase dynamics by measuring 
the difference between Qi with Ri by the χ2 statistics and L1 distance: 
 

2 2( ) /( ),i i i i
i

Q R Q Rχ = − +∑  

(8) 

(9) 
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| |,i i

i
L Q R= −∑  

where the summations in both equations run over all  of the populated cells in the PS.  The 
choice of these measures is based on rather natural considerations.  The χ2 statistic is one of the 
most powerful, robust, and widely-used statistical tests to measure discrepancies between 
observed and expected frequencies [16]. The L1 distance is the natural metric for distribution 
functions since it is directly related to the total invariant measure on the attractor.  These 
measures account for changes in the geometry of the attractor and for changes in the DF as well.  
To apply these measures properly, we scale the total population of the unknown distribution 
function (sum over all the domain populations in Ri) to be the same as the total population of the 
basecase. The sum in the denominator of Eq. (10) is based on a test for equality of two 
multinomial distributions [16]. 
 
The previous analysis can be extended in a natural manner that is inherently compatible with the 
underlying dynamics.  By connecting successive PS points as indicated by the dynamics, y(i) → 
y(i+1), one obtains a discrete representation of the process flow [4].  We thus form a 2d-
dimensional vector, Y(i)=[y(i), y(i+1)], in the connected PS.  As before, Q and R denote the 
distribution functions for the basecase and testcase, respectively, in the connected PS.  We define 
the measure of dissimilarity between these two connected PS states, as before, via the L1-distance 
and χ2 statistics [15]: 
 

2 2( ) /( ),c ij ij ij ij
ij

Q R Q Rχ = − +∑  

 
| | .c ij ij

ij
L Q R= −∑  

 
The subscript c indicates the connected distribution function measure. We note that the value 
λ= 1 results in 1d −  components of y(i + 1) being redundant with those of y(i), but we allow this 
redundancy to accommodate other data such as discrete points from two dimensional maps.  
Using pair-wise connectivity between successive d-dimensional states, this approach captures 
even more dynamical information.  This additional information results in a higher discriminating 
power of the connected measures as compared with their non-connected counterparts. Indeed, the 
measures defined in Eqs. (10) -(13) are proven to satisfy the following inequalities [21]: 
 

2 2 2 2, , , .c c c cL L L Lχ ≤ χ ≤ ≤ χ ≤ χ  
 
Henceforth we shall refer to the quantities defined in Eqs. (9 - 12) as phase space dissimilarity 
measures (PSDM), to differentiate them from the TNM, defined in Section 2.  
 

(10) 

(11) 

(12) 

(13) 
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4. APPLICATION TO MODEL AND PHYSIOLOGICAL DATA 
 
 
In the following examples, we compare the relative performance of two TNM, namely the 
correlation dimension, D, and Kolmogorov entropy, K, and two PSDM, namely the χ2 statistic 
and the L1 distance.  The disparate range, variability, and physical meaning of these indicators 
render direct comparison difficult.  To achieve meaningful comparison, we convert the nonlinear 
measures into a consistent form, within a unified framework, by suitable renormalization [15, 
18].  For each nonlinear indicator, V = D, K, χ2, and L, we define Vi as its value for the i-th cutset.  
We denote by V the mean value of that indicator over the basecase, with a corresponding sample 
standard deviation σ.  The renormalized form of the indicator is then U(V) = |Vi – V |/ σ, which 
measures the number of standard deviations that the testcase deviates from the basecase mean.  It 
is expected that dynamical states close to the basecase have small values of the renormalized 
PSDM, while significant change is manifested by large values of the renormalized PSDM. 
 
We assess the discriminating power of the new measures by several test examples.  The first is 
the ordinary differential equation Lorenz model [19]: 
 

( ), , .x y x y rx y xz z xy bz= σ − = − − = −  
 
The Lorenz model describes an oversimplified weather evolution in which σ = 10, b = 8/3 and r 
is a variable parameter.  By varying r, one changes the type of stable asymptotic behavior of the 
Lorenz system from fixed points, to periodic orbits and eventually to a chaotic attractor.  As 
mentioned before, TNM are good indicators of a bifurcation or transition to chaos.  However, 
transitions between two chaotic regimes are not readily detected by these same measures, 
especially for relatively small changes in the parameter that underlies the transition. Therefore, 
we assessed the discriminating power of the PSDM by applying them to the systems above in 
region where they are known to behave chaotically, namely 45 ≤ r ≤90.  The results are 
displayed in Fig. 1.  
 
The second example is the time-delayed ordinary differential equations “synthetic brain” model 
proposed by Bondarenko [20],  
 

( ) ( ) ( ( )), , 1, 2, , .
M

i i ij j j
i j

u t u t a f u t i j M
=

= − + − τ =∑ …  

 
The Bondarenko model is a generalization of the Hopfield model for the electronic circuit 
realization of a neural network, which accounts for time delays, τj. This model has been proposed 
and studied in connection to its capability to produce signals similar to human EEG signals.  The 
state variable ui(t) is the output signal of the i-th neuron and the matrix aij denotes the coupling 
coefficients between the neurons, with randomly chosen values, 2 2.ija− ≤ ≤  In our illustration, 
we use M = 10 (ten neurons). The time delay of the j-th neuron output, τj, is constant and equal to 
10 conventional units. The nonlinear response function, f(x) = c tanh (x), simulates the nonlinear 
neural response to signals from neighboring neurons.  By varying the coefficient c between 5 and 
18, we change simultaneously the effective coupling between the neurons, while ensuring that 

(14) 

(15) 
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the system remains in chaotic regime.  The results of this study are displayed in Fig. 2.  The 
results in Figs 1 and 2 shows that the TNM indicate little change, if at all, while the PSMD 
unambiguously track and robustly display the underlying condition change.  
 
Having assessed the performance of the new measures on model data, we applied them to four 
sets of different clinical data, as briefly described below.  
 
Human electroencephalogram (EEG) data were acquired during clinical epilepsy monitoring and 
analyzed according to the procedure described in Sections 2 and 3. Figure 3 shows typical 
results. Raw EEG in subplot (a) has very complex, non-periodic features that are typical of brain 
waves. The seizure event occurred at 110.7 minutes, as denoted by the solid vertical line in 
subplots (d) and (e). No seizure event forewarning is provided by the correlation dimension in 
subplot (b), or by the Kolmogorov entropy in subplot (c). The isolated peaks at 42 minutes and 
58 minutes in subplot (c) are not significant. More than 27 minutes of seizure-event forewarning 
are provided by both U(χ2) in subplot (d) and U(L) in subplot (e), which have two (or more) 
successive occurrences above the threshold of 5 (the dashed horizontal line) at 85 minutes (the 
vertical dashed line). We have demonstrated this approach for seizure forewarning in 10-61 
datasets [15, 21, 18].  
 
Human electrocardiogram (ECG) data were acquired during ambulatory monitoring; see Ref. 
[22] for details. Figure 4 shows results for a ventricular fibrillation event at 37 minutes.  Raw 
ECG in subplot (a) has ten distinct heartbeats and their associated quasi-periodic (nonlinear) 
features. The correlation dimension in subplot (b) varies randomly without any forewarning 
features, showing a rise at the fibrillation event. The Kolmogorov entropy in subplot (c) varies 
erratically.  The peaks occurring at 8 and 24 are not valid forewarning indications.  Sixteen 
minutes of fibrillation-event forewarning (the vertical dashed line) are provided by both U(χ2 )in 
subplot (d) and  U(L) in subplot (e), which have two (or more) successive occurrences above the 
threshold (the dashed horizontal line).  
  
A surface stethoscope acquired lung sounds data during lung experiments on anesthetized pigs 
[23]. The nominal state consisted of normal breathing. Subsequent test cases were obtained by 
injecting a controlled volume of air (in increments of 100 milliliters up to 1400 milliliters) in the 
space between the diaphragm and the lungs, making breathing increasingly more difficult. Figure 
5 shows sample pneumothorax results. Raw lung sounds data in subplot (a) has very complex 
features, including quasi-periodic heartbeats that are superimposed on breath-cycle undulations. 
The correlation dimension in subplot (b) provides no clear indication of condition change. The 
Kolmogorov entropy in subplot (c) likewise varies erratically. Condition change is indicated by 
both U(χ2) in subplot (d) and U(L) in subplot (e), which rise to a plateau of 5 over 100-500 ml, 
then increase to values larger than 20 over 500-1300 ml thereby providing robust forewarning of 
the animal's death, which occurred at 1400 ml.  
 
Finally, electrocardiogram (ECG) data were obtained from anesthetized rats subjected to an 
induced sepsis experiment. After 55 minutes of normal-state recording, the rat was exposed to 
inhaled bacterial endotoxin that induces an inflammatory response and eventually sepsis. Figure 
6 shows sample results. Raw ECG in subplot (a) has 14 distinct heartbeats with additional quasi-
periodic (nonlinear) features. No indication of condition change is displayed by either the 
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correlation dimension in subplot (b), or by the Kolmogorov entropy in subplot(c). The condition 
change is shown clearly by both U(χ2) in subplot (d) and U(L) in subplot (e), which remain low 
for the first 57 minutes, rising abruptly after the exposure onset, remaining high for the next 20 
minutes, then decreasing slowly as the immune response fought off the bioagent effects. This 
recovery response is consistent with other physiological observations during the test (not shown). 
 
 

5. DISCUSSION 
 
 
We have developed model-independent indicators to detect condition change (dissimilarity) in 
nonlinear time series. The phase space indicators of condition change measure the difference 
between suitably discretized forms of the invariant distribution functions on the attractor for the 
basecase and testcase, as χ2 statistics and L1 distance.  Using these metrics magnifies the 
differences between the process dynamics, and avoids the inner cancellation effects due to 
averaging which occurs when calculating the TNM.  As a result, significant changes in model 
dynamics are clearly detected by the PSDM, as the parameters vary.  On the other hand, these 
changes are either barely detected or undetected by the TNM, such as the Kolmogorov entropy 
or the correlation dimension.  For real physiological data, the same conclusion can be drawn, 
although the difference is less marked, due to inherent noise.  Indeed, the two model examples 
show a gradual rise in PSDM as the underlying parameter increases monotonically with time, as 
shown in Figs. 1-2.  The four physiological examples show small values of the PSDM in the 
normal state, followed by a notable monotonic rise and/or by successive occurrences of the 
PSDM above the  “normality threshold “ that indicates forewarning or onset of abnormal 
(pathological) dynamics, as shown in Figs. 3-6.  In all applications, the renormalized PSDM 
show results that are consistently more robust and more timely than those provided by the TNM. 
 
An early version [17] of this approach was successfully applied to detect dynamical change in 
various physical processes.  Examples include: distinguishing different drilling conditions from 
spindle motor current of a machining center; detecting balanced and unbalanced centrifugal 
pump conditions from motor power; and predicting failure of a bellows coupling in a rotating 
drive train from motor current.  More recent, improved analyses include: discerning the 
difference in microcantilever vibrations with and without mercury on the sensor and forewarning 
of various machine and equipment failure [24].  Success for such diverse applications suggests 
that this technique can be reliably used for measuring condition change in nonlinear processes. 
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Figure 1. Nonlinear measures versus r for the Lorenz system: (a) time serial data from 
channel y, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and (e) 
U(L). The phase space parameters are d =3, S = 20, and λ = 2. Each cutest has N = 50,000 
points. 
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Figure 2. Nonlinear measures versus c for one neuron channel in the Bondarenko system: (a) time 
serial data from neuron 2, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and 
(e) U(L). The phase space reconstruction parameters are d = 3, S = 7 and λ = 1. Each cutest has N = 
20,000 points. 
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Figure 3. Results for Channel 5 of dataset #PVM006, showing time-serial plots for: (a) 2.4 seconds of raw EEG 
data collected at 250Hz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and (e) U(L). 
The phase space dissimilarity measures in subplots (d) and (e) were computed for d = 3, S = 20, λ = 17, 
and after removal of eye blink artifacts. Each cutest has N = 22,000 points, corresponding to 88 seconds. 
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Figure 4. Results for dataset #EC8202, showing time-serial plots for: (a) 10 seconds of raw ECG 
data collected at 250 Hz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) U(χ2), and 
(e) U(L). The phase-space dissimilarity measures in subplots (d) and (e) were computed for d= 5, 
S = 3, λ = 27, after removal of breathing artifacts. Each cutest had N = 18,000 points, 
corresponding to 72 seconds. 
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Figure 5. Results from dataset #PTX5, showing time-serial plots for: (a) 4 seconds of raw lung 
sounds data collected at 10 kHz, (b) correlation dimension, D, (c) Kolmogorov entropy, K, (d) 
U(χ2), and (e) U(L). The phase-space dissimilarity measures in subplots (d) and (e) were 
computed for d = 3, S = 30, λ = 20, after removal of breathing artifacts. Each cutest has N = 
50,000 points, corresponding to 5 seconds. 
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Figure 6. Results for dataset #33209V, showing time-serial plots for: (a) 2.4 seconds of ECG data 
collected at 500 Hz, (b) correlation dimension, D, (c) Kolmogorov entropy K, (d) U(χ2), and (e) 
U(L). The phase-space dissimilarity measures in subplots (d) and (e) were computed for d =2, S = 
2, λ = 80, after removal of breathing artifacts. Each cutset has N=20,000 points, corresponding to 
40 seconds. 


