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High-energy fusion-product losses from an axisymmetric tokamak

plasma are studied. Prompt-escape loss fluxes (i.e. prior to slow-

ing down) are calculated including the non-separable dependence of

flux as a function of poloidal angle and local angle-of-incidence at

the first wall. The flux is strongly peaked at near grazing incidence,

suggesting that blistering-injected impurities can reduce reactor

burn times by 50-70%. Non-prompt losses (during slowing down, without

anomalous effects) are also calculated to be ~ 0.1 x (prompt loss) x

~ and consequently make a small contribution to impurity produc-

tion. Sensitivity studies show the plasma-wall separation to be the

strongest factor controlling prompt losses. Modest increases (~ 20%)

in wall radius (plasma radius fixed) of a device, such as the ORNL-

EPR, are found to reduce blistering-injected impurities to a level

which should no longer limit the burn time.

Fusion-product (fp) thermalization and heating are calculated

assuming classical slowing down. The present analytical model des-

cribes fast ion orbits and their distribution function in realistic,

high-S, non-circular tokamak equilibria. First-orbit losses,

trapping effects, and slowing-down drifts are also treated. By

solving a 3-D (+ time) PDE, it is possible to obtain an invariant of



the slowing down process: ~/E = (magnetic moment)/energy = constant,

and explicit expressions for the slowing-down drifts. Large banana-

width effects give rise to a net co-going alpha particle current.

The large banana-width orbits smear the energy deposition over large

regions of the plasma. This causes the flux-surface-averaged ion heat-

ing rates to be 10-20% below in-situ rates on axis, but enhances the

edge heating ~ 10-fold over in-situ deposition. While this result

implies reduced alpha "ash" accumulation on axis, the reduced heating

rate makes start-up and maintenance of ignition more difficult.
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