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9. FOKKER-PLANCKEQUATIONOF SLOWINGDOWN

Here, we find the distributionfunction in non-local co-

ordinates, (v,s,~ ), meaning that particles are assigned to an orbit,x -

rather than the distribution function being given at a local point

in configuration- and velocity-space. It is then possible to des-

cribe the evolution of the orbits (e.g. slowing down), assuming the

slowing-down time, TS' is long compared to a bounce time, Tb.

Beginning with the drift-kinetic equation, and expanding in multiple

time scales as done in Ref. 18, we obtain a bounce-averaged, drift-

kinetic equation on the T time-scale:s

e
-+ af + s}E '-

- -+
m av

(9.1 )

The bounce average on the RHSof (9.1) includes all the large banana-

width effects. (The details of evaluating these bounce integrals are

described in Appendix E.) Here, C is the Fokker-Planck operator,

which is time-averaged around an entire bounce orbit (i .e. bounce

averaged), and s is the fast ion source. The particle flows in (9.1)
-+

arise from collisions and from the electric field, E, associated

with the ohmic heating current. The collision operator, C(f), is

a function of the local variables, (R,z,v,n) +-+ (B,\p,v,n), while f

is labelled non-locally by the COMvariables (v,s,~). To usex

(9.1), it must be transformed into the COMspace.
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9.1 Transformation of Collision Operator

The Fokker-Planck operator used here describes fast ion

binary encounters with the background plasma. Fast ion inter-

actions with themselves are neglected since the fp density is much

less than the background density. Further, assuming azimuthal

velocity-space symmetry for a 1/r2 force-law allows the Rosenbluth-

MacDonald-Judd form [87J of the collision operator to be written as:

C(f) = -L -1.. lf (i It:!.+ aG)]+ -L -.-L (if ~G)2 av av av 2 2 ~ 2 :-zv v oV oV

(9.2)

where G and H are the Rosenbluth potentials:

(9.3)

(9.4)

The index, a, indicates a sum over all background species, with

(9.5)

The local derivatives in (9.2) must be transformed to COMcoordi-

nates using the chain rule:
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where the subscripts indicate the variables held constant during

di fferenti a ti on.

Substituting (9.6) - (9.7) and (8.2) into (9.2) gives:

where the coefficients A. are:
1

99

(9.6)

(9.7)

(9.8)
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(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

The derivatives in the chain rule are found by taking ~
I

and
n B~v .

a~1 of (8.1) and (8.2), then solving the resulting pairs of 2
B~n

equations in 2 unknownsfor asian, a~ Ian, aslav and a~ lav:x x
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~=
all

G cx
vy

(9.14)

G cx
vy (9.15)

-G c B'
a1'; _ x Y ex

av- l(B' -B' )ex ox
(9.16)

a'/' 2G cyB'fix x x
av = l(B' -B' )ex ox

(9.17)

The result of this transformation into the COMspace is a 3-

dimensional, second-order, partial differential equation (POE) with

only the coefficients being bounce-averaged. In contrast, without

bounce-averaging, the result is a 4-dimensional, second-order, POE.

9.2 Simplifying Assumptions

To examine 3.5-Mev alpha particle slowing-down, several addi-

tional approximations are possible. Speed-diffusion is important

for energies above the initial alpha energy and when:
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E IE. < (m 1m )1/3(m Im.)2/3Z 2/3 = 26 7 Z 2/3
a. 1 - e 1 eff . eff (9.18)

Both limits are unimportant for plasma heating by alphas so speed-

diffusion is neglected. In fact, Cordey [65J finds the correction

due to speed-diffusionto be _ T./E , which is a negligiblecorrec-1 0

tion « 10-3) in this problem. Charge-exchange losses due to im-

purities could be significant [88J, however the reactor-grade

plasmas of interest here require that Zeff (and thus such impurities)

be minimized: Zeff - 1-2. Consequently, charge exchange losses are

neglected because the cross sections are very low for MeV alphas

in hydrogenic plasmas. Also, the pitch angle scattering term is

small for low Z ff and v > v , where v is the speed at which thee c c

slowing drag due to ions equals that due to electrons, with E =c
~ mv2_ 32.1 T for a.'sin a 50-50 O-T plasma (c.f. eqn. 4.13 ofc e

Ref. 18). For these purposes, by the time alphas have slowed to

E ~ E , 90% of their energy has been deposited in the plasma, so thec

scattering contribution is also dropped. Petrie and Miley [8J have

explicitly evaluated the contribution due to pitch-angle scattering

and found it to be small. Electric field effects are important

only for circulating particles after a large number of bounce

periods: Nb - Ls/Lb - 105. This corresponds to energies,

Nbe~ ~ 105 eV, where ~ is the toroidal loop potential driving the

ohmic current, which is also insignificant for heating calculations.

The simplified form describing the alpha slowing-down becomes:
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(9.19)

(
2 aH aG) ~.

where U = - v 2iV + 2iV ' and the bounce-average, 0, of some quantl ty,

0, is 0 = ;b f dTD. While low Zeff was assumed in deriving this last

equation, all the terms in (3.19) are rigorously independent of Zeff'

The resulting 3-dimensional first-order partial differential equa-

tion, together with the boundary conditions, in (v,s,~ ) space isx

straight-forward to solve.


