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3. LOSS-REGIONBOUNDARIES

Having studied the drift orbit properties in Chapter 2, the de-

termination of the loss region boundaries is next.

3.1 Grazing Orbit

First to be considered are orbits initiating at (x.,z.) ++1 1

(r.,e.) and intersecting the wall at a position (x ,z ) ++ (r ,e ).1 1 W W W w

Evaluating p~ for this initial condition and substituting into (2.6)

yields a quadratic in cosx which has the solution:

cosx;:: X . [1 - AR IR.)(l-X-?) ]Wl w 1 Wl (3.1)

where

and ~ = ~(r ), ~. = ~(r.).w W 1 1

Real solutions require IXwi I ~ 1 and Icosxl ~ 1. Orbits grazingly

incident on a circular wall, in the tokamak mid-plane are easily de-

termined from (3.1). More generally, (3.1) can be used to obtain

orbits incident on the wall out of the mid-plane by numerically

finding a local minimum (maximum) in cosx versus poloidal angle, el,

of the wall-orbit intersection for the upper (lower) loss boundary.

For example, in TFTR, there is a class of guiding center orbits (0.15

- to l-MeV a for a = 85 cm, I = 2.5 MA)which intersect the wall

three times. The corresponding cosx vs el plot is shown in Fig. 3.1;



-.665

-.670

-.675 cas XI

-.680

-.685

-.690

><

~ -.695
(.)

-.700

-.705

-.710

-.715

-.720
cas XM1N

-.7250 90 135
91 (DEGREES)

FSL- 80- 68

cas X MAX

180

Figure 3.1 Plot of cosx versus poloidal angle, 81, of wall-orbit
intersections for a l-MeVa in TFTR(I = 2.5 MA, a =
85 cm), having a birth position on the x-axis at x. =,
72 cm.
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note that for cosXl <cosX<cosX , there are three e'-values for onemax

value of cosx, corresponding to three wall-orbit intersections. How-

ever, the differential loss fraction, f1, for the interval ~, is

negligible (f1 = ~/2 ~ .5%) so the loss boundaries are the maximum

(minimum) in cosx as shown in Figure 3.1.

While the solution to (3.1) may satisfy the above mathematical

conditions, it may also correspond to a disconnected branch of the

orbit hitting the wall (see Fig. 3.2). It is necessary to test for

this condition by moving along the orbit, from its birth point to the

wall-orbit intersection position. For a valid intersection, the

solution to (2.6) must be real for every r-value in the range,

r. < r < r. If a disconnected region does exist, i.e. no real solu-1 - - w

tion to (2.6), then the grazing orbit solution must be rejected.

3.2 Stagnation Orbit

If the solution for a grazing orbit fails any of the above tests,

the next loss boundary to consider is a stagnation orbit. At the un-

stable stagnation point (x ,0), the orbit is characterized [18J bys

dz/dx = 0, or equivalently dh/dr = K/R , where K = sgn (x). Byo s

evaluating p~ at the unstable stagnation point (pitch angle = Xs) and

substituting into (2.6), a quadratic in cosX is obtained which hass

the solution:

I

ZeKl/Js
mv (3.2)

where I/JI ==dl/J/dr at r = Ix I. A second equation for cosx is obtaineds s s
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Figure 3.2 An example of a disconnected guiding-center orbit which
grazingly intersects the TFTRwall.
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from (3.1) for a particle initiating at (x ,Q) ++ (r , Arccoss s

(sgn(x )) with pitch angle, X , and moving to (x. ,z.) ++ (r. ,e.);s s 1 1 1 1

equating the result to (3.2) gives:

(3.3)

This last equation must be solved numerically for rs = IXsl, given

the initial position. From symmetry, the pitch angle at initiation

is:

cosx = Xsi [1 - ;(R/Ri )(l-X;;)J
(3.4)

Real solutions to (3.3) and (3.4) require Ix .1> 1, Icosx I < 1 andS1 - S

I V I > l.s

A special case occurs when the stagnation orbit solutions are

desired for an initial point (x.,Q) lying outside x- < x < x+. The1 c c

corresponding pitch angle is obtained from (3.2) in the limit as

X -+ X .s i .

cosX = V.
(

1 - A_V~2
)

V. =
1 l' 1 (3.5)

As before IVi I ~ 1 for real solutions to (3.5). More generally (3.5)

determines the pitch angle for any orbit which is a point on the

x-axis; for example, in Fig. 2.2b, the transition from X = 70to

X = 90 correspondsto a "point"orbit with X = 80.51°. For birth

points on the x-axis, with x. < x- or x. > x+, the "fattest" banana1 c 1 c

(last trapped orbit) corresponds to a stagnation orbit, for which

x.,
1 with a pitch angle determined by (3.5). A particle born at
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+
(x- ,0) gyrates about that point until a perturbation (due to finitec

gyroradius effects or collisions) causes the particle to leave the

x-axis, along a guiding-center path determined by (2.6). The values

of xf are found by solving dG/dx = a at x = x., from (3.3); typicalc s 1

values of xf for TFTRare listed in Table 3.1. A useful property ofc
+

these critical positions, x-, is that the unstable stagnation point,c

x , occurs outside the interval x- < x < x+; this realization speedss c- - c

the numerical search for x in (3.3). As with the grazing orbits,s

it is necessary to move along a stagnation orbit, beginning at the

birth point, to assure that the path intersects the wall.

Table 3.1: + .
Values of x- ln TFTRIc

3.3 Orbits with X = a (180°)

The final loss boundary to consider is cosX = sgn(xi), i.e.

X = a (180°), even if a valid stagnation orbit-wall intersection occurs.

As before, the orbit must be traced from the birth point to the wall

to verify intersection. If only a stagnation orbit-wall intersection

exists, this is the appropriate loss boundary; likewise, if only a

valid X = a (180°) intersection occurs. If both are valid intersections,

x-(cm)
+

Particle
xc(cm)c

3.52 MeVa -20.7 109.5

3.7 MeVa -21 .1 106.1

1.0 MeVa -13.4 >127

14.7 MeVp -33.8 51.2

3.0 MeVp -19.6 121.a
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the latter is the correct loss boundary. Examples of these last two

cases are shown in Fig. 3.3 for a 0.82-MeV He3 in TFTR (I=lMA,

a=85 cm).

3.4 Summary of Boundaries

Table 3.2 summarizes the various loss boundaries and the

associated equations, used in calculating the loss region in velocity

space. By solving an analytical form for the guiding-center drift-

orbit equation, it is possible to find the pitch angle, X' correspond-

ing to an orbit (defined as type A) which has an arbitrary birth

position and intersects the wall at any point. This includes a general

form for X' corresponding to x-type stagnation orbits (type B orbits),

occurring for both R < Rand R > R. Study of the drift orbits [4,22Jo 0

also shows that particles born near the inner (outer) plasma edge can

have a minimum(maximum)loss orbit (type C orbit), for X = 0 (180°).

Table 3.2: Summary of Loss Boundaries

Type Equation(s) Figure(s) for Examples

A

B

Grazi ng 3.1

3.2-3.4

3.5

2.2

2.2-4Stagnation

Point

C X = 0, 180° 2.3a,3c

These orbit types are used to define the boundaries of the velocity-

space loss-region for fp's escaping to the wall from any given birth

'-- point. If a type A orbit exists and is continuously connected between
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Figure 3.3 Stagnation and X=180° guiding center orbits for a 0.82-
MeVHe3 in' TFTR (I=lMA,a=85 em). Fig. 3.3a shows an
example of only the X=180° orbit intersecting the wall
for a birth point at (57 em, 63.17 em). Fig. 3.3b
shows an example of both the stagnation and X=180°
orbits hitting the wall from an initial point of (-42.5
em, 73.61 em).
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the birth point and wall, it is the appropriate loss boundary to the

outboard (inboard) edge of the wall. If not, B, and then C, are

successively examined. If both Band C satisfy these criteria, then

orbit C is the appropriate loss boundary. When these conditions for

particle loss are combined, the loss region in velocity space is ob-

tained. An example for alpha losses from the TFTRI plasma is shown

in Fig. 3.4 for a parabolic current density profile. It is note-

worthy that losses occur across the entire plasma but only for energies

above 350 keV. Fig. 3.4 differs from the plots of Romeet al. [18J,

because in the present calculations the wall is removed from the

plasma edge. The intersection of the loss region with the VII axis

occurs for cosX = :!: 1, which implies Ix .1 = 1, from (3.1). The result-Wl

ing velocity is:

(3.6)

where h = (R + x )/R and x corresponds to the inner and outer edgeswow 0 w

of the first wall; similarly, hi corresponds to the initial point.

Using these results in the next chapter, the wall loading from

each birth point is calculated for all wall segments between the wall-

orbit intersections, corresponding to the loss boundaries, x. < Xmln -

< X . If all these boundaries fail to exist, there is no loss region- max

for the given birth point, i.e., the fp is totally contained.

For later reference it is convenient to define the zero loss

region (ZLR); all orbits originating inside the ZLR are completely con-

fined and cannot reach the wall. The ZLRcan occur in two ways
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Figure 3.4 Loss region in ~I -vJ. space for an a incident on the first
wall from birth points on the x-axis in the TFTR-I plasma.
The assumed form for current density is J = Jo[1-(r/a)2J.
Numbers of each curve in the upper graph indicate birth
points (for R < Ro) as the ratio (-xi/a); on the lower
figure the numbers indicate birth pOlnts (for R > Ro) as
(+x./a).1
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(see Fig. 3.5): either being bounded by the inner loop of an unstable

stagnation orbit which barely intersects the outboard edge of the

wall, or being bounded by the second loop of a double stagnation

orbit [4J. In the extreme case, the loss fraction, F£, becomes zero

as the ZLR covers the whole plasma for a sufficiently large plasma-

wall separation.
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Figure 3.5 In the top figure the zero loss region is bounded by
the inner loop of the stagnation orbit which grazingly
intersects the outboard edge of the first wall; or-
bits originating inside the ZLRcannot reach the wall.
In the bottom figure, the zero loss region is bounded
by the second loop of a double stagnation orbit.


