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2. GUIDING-CENTERMOTIONIN TOKAMAKS

Basic studies of neoclassical transport have been done by a

number of workers [14-18J. These papers, as well as in Chapters 2-7

of this work, make seven basic assumptions: 1) the tokamak fields are

axisymmetric, i.e. magnetic field ripple is neglected; 2) the par-

ticle gyroradius, r , is much smaller than the scale size of theg

magnetic field; 3) diamagnetic effects due to finite plasma pressure

are negligible; 4) the plasma is collisionless, implying that no

slowing down or pitch angle scattering occurs during one banana

orbit; 5) the toroidal current density is a function of poloidal

radius only; 6) the toroidal magnetic field is much larger than the

poloidal field; 7) electric field effects on the orbits are negli-

gible. Petrie [19-21J has analyzed the electric field effects due

to fusion-product losses. His results show that the resulting E x B

drift does not affect the fusion-product orbits, and that electrical

potential (~) retardation of fusion-product losses is negligible,

i .e. e~ $ kT « E.

2.1 Previous Work

Prior work has concentrated on plasma transport [lJ and gross fea-

tures of high-energy ion losses[6,15-18J. The present work is the first

to calculate wall loading fluxes [lOlJ. In developing the techniques

for this calculation, modifications and generalizations of the theory
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were necessary. In particular, this work eliminates the small banana

width approximation of Galeev and Sagdeev [14J, and excludes the

numerical procedures of Stringer [15J, McAlees [16J, Tenney [17J and

Ohnishi et al. [6J. The latter methods require much computer time

and would be difficult to extend to wall loading calculations. Rome

et al. [18J calculate the velocity-space loss region for injected

ions, but do not apply their results to compute wall loading. Spe-

cifically, they extend McAlees' work to analytically determine the

. pitch angle corresponding to the orbit tangent to a limiter at r = a

(the toroidal coordinates are defined in Fig. 2.1), and also derive

an expression to numerically compute the pitch angle for the "fattest"

banana orbit. Their results hold only for particles born in the

equatorial plane with R > R '. To extend the loss analysis over theo

whole plasma, Romeet al. note that the orbit equation can be used to

map other points unto the corresponding points for z = 0, R > R ;- 0

however, as they point out, this procedure is tedious in practice.

2.2 Large Banana-Width Orbits

The present study employs a more general analytic formulation to

calculate orbits incident on a limiter at r = a and/or a wall at r > a,

from an arbitrary birth point. Our loss region algorithm extends that

of Ref. 18 to include the effects of stagnation-orbits for R > R ,o

orbits grazingly incident on the wall in the mid-plane for R < Rando

also grazingly incident on the wall out of the mid-plane, X = 0

orbits for R > R , and elimination of disconnected orbits from the seto

of valid solutions (see Chapter 3). These effects are especially
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Figure 2.1 The toroidal coordinate geometry is shown here with ~
in the toroidal direction. The origin of the primed
coordinates is located at the center of the wall cross
section.
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important for high-energy fusion products (E > 1 MeV)with birth points

assumptions stated at the beginning of this chapter, the Lagrangian

of motion for a particle of mass, m, and charge, Ze, is:

where electric fields are assumed to be negligible. From the axisym-

metry condition, aL/a~ = 0, together with Be « B~, the well-known

canonical angular momentumis obtained: P~ = mRoh~+ZeRohA~

where h = R/R , v = vcosX, and X = the angle between v and B. Fromo II

the e-component of B = 7 x A, one obtains hA~= - Jr Be(r)dr, whereo

the Knorr form [23J for the magnetic field is used: B = h-l(8Be(r)

+ ~Bo)' Bo = constant. The resulting expression for P~ is:

P,/, = mR hv -Ze1jJ ( 2 .2)
't' 0 II

where 1jJ = Ro J:Be(r)dr. Assuming a toroidal electric-current density
of the form

(2.3)

the following expression for poloidal flux function, 1jJ(r), is ob-

tained with N real and Ma positive integer:

near the plasma edge (e.g. ORNL-EPRand UWMAK I) and can introduce

errors> 10% in loss fraction (see Chapter 4).

The basic properties of banana orbits have been reviewed by

Kadomstev and Pogutse [22J, and will not be repeated here. Under the
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where these equations are in rationalized mks units.

To obtain the equation
2

E = W + Yzmv are
1- II

done by Meka [24J, this last expression is then substituted into (2.2)

of motion, the invariants ]1 = W IB and
L

combined to obtain v = f /2(E-]1B Ih)/m. As first
II 0

to obtain the orbital equation:

x = R [Yzh. sin2 X. + YzA';? sin4 x.u+ 4(P",+Ze1/J(r))2/(mvR)2 -1],0' , , , 'I' 0

(2.6)

z = f

where the subscript IIiII refers to the initial point of the orbit.

Equation (2.6) is the projection of the particle guiding center motion

onto the x-z plane (see Fig. 2.1), and arises from toroidal axisym-

metry (i.e. the cp-coordinate is ignorable.) It provides an especially

convenient, analytical expression for generating and analyzing part-

icle orbits.

Two useful properties of this orbital equation should be noted.

First, express (2.6) as an equation for x = x(r'Xi ,Bcp,Be). Then from

(2.2) and (2.4)-(2.5), the symmetries with respect to the last three

variables are obtained; namely:
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(2.7a)

(2.7b)

(2.7c)

.
Secondly,consider the ratio of ~/mvR for two different particles ato

a given poloidal radius and identical reactor parameters. From (2.4)-

(2.5), we fi nd :

where P. is the particle momentum. Combining (2.8) and (2.6) implies1

that identical orbits result when,

(2.9)

Thus, identical fusion product orbits occur for two equally charged

fusion products from the same reaction (e.g. for T and P from D(d,p)T),

since then Pl = P2. Another consequence of this last condition is that

protons and alphas of the same energy have essentially the same orbits.

These properties will be used in Chapter 4, in discussing wall-loading

profiles for various fusion products.

To calculate the loss region in velocity space, it is necessary

to study the drift orbit properties. Figures 2.2 and 2.3 show orbits

for D-He3 fusion products (3.7-MeV a and 14.7-MeV p) in the TFTRweak

compression (TFTR I) plasma (see Table 2.1 for machine parameters).

D-He3 is of interest because it avoids neutron- and tritium-radiation



Table 2.1: Tokamak Parameters

Machine PLT[26]** TFTR I [27t TFTR II [27] ORNL-EPR[28]t UWMAKI[29]@

B (T) 4.6 5.2 5.2 4.8 3.820

I (MA) 1 1 2.5 7.2 21

R (m) 1.32 2.48 2.48 6.75 13.000

a(m) 0.45 0.54 0.85 2.25 5.00

r (m) 0.48 1.10 1.10 2.25 5.50w

X (m) 0 0.17 0.17 0 00

T. (keV) 5 10 10 22.5* 11 .110

T./T. 2
1-.8(r/a)2

2 2 11-.8(r/a) 1-.8(r/a) l-(r/a)1 10

( -3 1xl 020 1.6x102O 1.6x102O 8x1019 1.2x102On. m )10

n./n.
2 2 2

[1-(r/a)2] [1- .99 ( r / a) 2]l-(r/a) l-(r/a) l-(r/a)1 10

J/J 1-(r/a)2 1-(r/a)2
2 2

0 l-(r/a) l-(r/a)

q(a) 3.53 3.06 3.03 2.50 1. 75

*
An ignited system is assumed, having a thermal power of 420 MW.**
frinceton harge Iorus

+Tokamak Fusion Test Reactor --'--'- - --

tQak .13.idge Jiati ona1 haboratory-fngi neeri ng fower .Reactor

@Qniversity of !iisconsin TokaMAK-DeisgnI
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Figure 2.3 Neoclassical guiding-center orbits of a 14.7-MeV p, for
various birth points on the x-axis (30,10,-30 cm) in
the TFTRweak compression plasma. The origin is posi-
tioned at the plasma column center (Ro = 248 cm, a =
54 cm). The number on each curve is the pitch angle at
birth.
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hazards in proposed fusion-product detection experiments [25J.

Simultaneously, the alpha behavior is quite similar to the 3.5-MeV

a from D-T. Note that only the z > 0 half of the orbits are

plotted because (2.6) indicates symmetry in I z. The first wall

position is indicated by the dashed line.

The details of the loss boundaries are considered next. For

the 3.7-MeV a, the lower loss boundary in pitch-angle space, X . ,mln

intersects the wall at grazing incidence. The upper loss boundary,

X a ' corresponds to the "fattest" banana in Figs. 2.2b-2.2c, and tom x

X = 1800 in Fig. 2.2a. The "fattest" banana is what Tenney [17]max

calls a stagnation orbit, and the point where this orbit touches the

x-axis (dz/dx = 0), Tenney terms the stagnation point (Rome, et al.

[18J refer to this point as the pinch point). At the stagnation

point, x , the drift motion in ~ slows to zero, then reversess

(stagnates) due to cancellation of the motion along the flux surface

with the vertical drift (arising from VB and curvature effects).

The point, x , is really an "unstable" stagnation point [30J sinces

the "particle takes an infinite time to drift there. This is to be

distinguished from a "stable" stagnation point, which also has zero

net vertical drift and which corresponds to the "point" orbit dis-

cussed in Chapter 3.

Additional features of these orbits are illustrated in Fig. 2.3.

Particularly noteworthy are the stagnation orbits which occur for

R > Ro (see Figs. 2.3a-3b), caused by the same cancellation of ver-

tical drift with motion along the flux surface. The existence of
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unstable stagnation points for both R < Rand R > R is interestingo 0

and has been discussed by Goldston [30J, who elucidated the features

of such orbits for fast, neutral-beam-injected ions in ATC. The

R > R unstable stagnation orbits for the 14.7-MeV p correspond too

the lower loss boundary, X ' . Also, in Fig. 2.3c is an instance inmln

which X, = 0; and in Fig. 2.3a is a case for which X = 180°.mln max

Not shown in these figures are a small class of orbits which inter-

sect the wall at grazing incidence for R < R , corresponding too

Another feature of the R < R stagnation orbits can be seen ino

the sequence of Figs. 2.2b-2.2c and 2.3b-2.3c: as the major radius

of the initial point (Ri = Ro + xi) decreases, the major radius of

the unstable stagnation point (R = R + x ) increases. Consequently,s 0 s

there is a critical position (R- = R + x-) for which x. - x + O.C 0 C 1 s

This situation corresponds to the orbit loop between the initial and

stagnation points shrinking to a point as xi + x~ for xi > x~. There

is an analogous limit for R > R stagnation orbits, since for theseo

orbits R decreases as R. increases; the corresponding critical posi-s 1

tion is R+ = R + x+. For birth points on the x-axis at (Xl' ,0), out-c 0 c

side the interval x- < x. < x+, x coincides with x.. Although thec 1 c S 1

orbit loop, from birth to stagnation, shrinks to a point in this case,

the "fattest banana II portion of the orbit can still carry the fast ion

to the wall .

Finally there is a very specialized case of the stagnation orbit,

illustrated in Fig. 2.4, for a 3.52-MeV a in TFTR I with J/Jo= l_(r/a)'Ol.
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orbits coalesce into a double stagnation orbit. For x. < 6.34 cm,,
the R < Ro stagnation orbit becomes the "fattest" banana, and the

R > Ro stagnation orbit becomes a counter-circulating orbit.

Fig. 2.4a suggests an interesting possibility for high-energy

ion beam injection [31J. Neutral beam injection can be replaced by

ion injection into the spatial and velocity regions bounded by a pair

of stagnation orbits, like those of Fig. 2.4a. The ion injectors can

be coupled to the tokamak via a bundle divertor. The ions can then

enter the plasma along orbits corresponding to X2 < X < Xl. It would

be strongly advantageous to inject close to the outer stagnation

orbit, X = Xl' for two reasons. First, any ions near the inner stagna-

tion orbit, X = X2' can easily charge exchange with neutrals near the

plasma edge while moving slowly through the outboard stagnation point

at x = x+. Second, ions near the outer stagnation orbit will spends

much time near the inboard stagnation point (x = x-), and thus deposits

more energy at the plasma core than at the plasma edge. The ions can

be trapped in the plasma by pitch-angle scattering near the inboard

stagnation point. Ions can also be pitch-angle scattered into loss

orbits, but these orbits are well-defined, so lost particles might be

recQvered and re-injected. Although injection along stagnation

orbits is a difficult problem, the advantage of ion injection offers

a strong motivation for considering such a technique. While this is an

intriguing problem for more study, it will not be discussed further.

In Fig. 2.4a, both the upper and lower loss boundaries are stagnation

orbits for a birth point at xi = 8 cm on the x-axis. As the x-value

of the birth point decreases to x. = 6.34 cm in Fig. 2.4b, the two,


