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11. SLOWING DOWNSOLUTION

11.1 Method of Sol ution

Application of the method of characteristics to (9.19) yields

the slowing-down distribution. For v<v , (9.19) can be rewritten as:o

df af . af . af . af f au
dt = at + v av + l; ~ + ~\ aijJ = 2" av 'x v

(11.1)

where the slowing-down drift rates are found using (9.16)-(9.17):

~. -U
v = 2"v

(11.2)

.
l; =

G cyB'

(
2

)
~

x ex 1-l;2 U(1/1x-1/1),
v4". (B' -B') l+l;'I'x ex ox

(11 .3)

. - -2GxcyBx

( l; 2~U(1/1x-1/1)1/1x- 4", (B' -B' ) l+l;)V 'I'x ex ox

(11.4)

Integration of (11.1), using (11.2) to write, dt

(11.5)

which can be further simplified by substitution from (10.1):

(11.6)

Note that (11.6) makes sense only when the coordinates (v,l;,1/1 )x

lie along the characteristic obtained by solving the system of

ordinary differential equations (11.2)-(11.4) with the initial con-

dition (vo,l;o,1/1xo).
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11.1.1 The Invariant, 1J/E

An important property of the slowing down distribution can be

derived from this solution. By taking the ratio of (11.3) and

(11.4) and integrating the resulting exact differential, the result

is:

(11.7)

Physically, this invariant arises because there is a negligible

amount of pitch angle scattering during the slowing down. Alter-

nately, the multiple time-scale discussion by Trubnikov [46J can be

used to infer (11~7). This result can also be found by following

Hazeltine's derivation [96J of the gyro-averaged derivative of 1J,

beginning with the Lorentz equations and including slowing-down

losses~ Meka [97, 121J previously obtained (11.7) for a's slowing in

low-S tokamaks assuming the Knorr-form [23J for the magnetic field.

11.1.2 Slowing Down Drifts

The direction of the drifts in (11.3)-(11.4) is also important:

B' )
{ +, R > Rand B' > 0

. ex x 0 ex

sgn(s) = sgn B1 -B1 = (11 .Sa )
ex ox

-, otherwi se

{ +, R > Rand B' > 0 and , < 0
5gn(x) = 5gn '-=B' =

x 0 ex
(11 .Sb)

ex ox -, otherwise
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As illustrated in Fig. 11.1, fast ions approach some "nominal" flux

surface as they slow down to form small banana-width (thermalized)

orbits. Since co-circulating and trapped orbits have ~ shiftedx

outward in R, the corresponding ~ -drift is inward (~ < 0). Like-x . x

wise, since counter-circulating orbits have ~ shifted inward in R,x

the ~ -drift is toward the magnetic axis (~ < 0). The positivex x

~ drift is a new (though small) finite-S effect occurring only forx

counter-going ions, where R > R in the portion of the minimum-Bo

well for which B' > O. The corresponding region of COMspace isex

small, lying between I'; = a and the right-hand o-type stagnation orbit

boundary. The ~-drift occurs to conserve ~/E in the presence of the

~ -drift. These results are consistent with the inward drifts forx

co-going particles (~ < a for I'; > 0) found by Cordey [45J andx

Killeen et al [77J, but are in apparent contradiction with the out-

ward drifts for counter-going ions found by Refs. 45 and 77. However,

this discrepancy is due to an ambiguity in definitions for

I'; = v (~=~ )/v, used here, and ~ = v (8=0)/v, used in Refs. 18, 45
II x II

and 77. The definition for ~ > a corresponds to ~ , which is con-x

sistent with the usage here, but ~ < a corresponds to evaluation at

~ for which the drift is outward (c.f. Fig. 11.1) and is consistentn -

with Refs. 45 and 77. The results of Petrie and Miley [8J also show

a net inward, slowing-down drift by using a model which apportions

all the slowing contributions at the two points ~ = ~ and ~ = ~ .x n

The magnitude of the drifts is an important result. In the

limit v. «v« V , the parameter, U, in (9.19) becomes:lon e
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3 3
U = (vc + v )/Ts' (11.9)

(11.10)

(11.11)

As before, m and m. are the electron and background ion masses; ne 1 e

is the electron particle density, and v = 12kT 1m . Combininge e e

(11.9)-(11.11) with (11.2-11.4), and applying simple scaling argu-

ments, one finds for typical ETF equilibria:

.
IjJ .

~ - v .th 0 2_", a", -v ' Wl . 5 < a < 0 7
x "'n '" IjJ .,

(11.12)

.. v
S - as v ' with 0 <Iasl< 0.05.o

(11.13)

Since (1jJ-1jJ ) is a measure of the poloidal gyroradius, (11.12) im-x n

plies that the net slowing-down drift in IjJ is - 1/2 of a bananax

width in slowing from velocity, v, to thermal. This is consistent

with the arguments of the previous paragraph. The s-drift, while

small, is sufficient to eliminate any net thermal a-current. Numeri-

cal calculations show that (11.12)-(11.13) are valid from 3.5 MeVto

thermal energies. Since the poloidal gyroradius is proportional to

velocity, we find
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(11.14)

where (~ -~) indicates (~ -~ ) at v = v , and similarly that:x n 0 x n 0

s(t) - s - a (l-v/v ).o s 0 (11.15)

Thus, the coefficients a~. and as characterize not only the drift

rates but the total drifts in slowing to thermal speeds. These

results apply to both of the equilibria listed in Table 10.1.

11.1.3 Method of Characteristics Solution

With the above properties in hand, the system (11.2)-(11.4)

can be reduced to the solution of a single differential equation.

Since the flux-surface-averaged quantities (c.f eqns. 11.21-11.25)

require a knowledge of the distribution function over (v,s,~x)

space, it is unnecessary to know the explicit time dependence.

(Even for non-steady-state problems, not of interest here, the ex-

plicit time dependence of f(v,s,~ ,t) must be found only if thex

time-scale for evolution of the equilibrium is < T.) We therefore- s

choose the speed, v, as the independent variable; this choice per-

mits the differential equations to be rewritten as:

-G cyBe' x. x

ds = .f = 2 ,_ BI )dv v v ~x(Bex ox

- ~

U(~x-~)

U
(11.16)

d~ ~ 2G cyBxx_ x_ x
(hi - ~ - v2~ (B' -B' )x ex ox

(11.17)
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In addition, (11.7) can be used to eliminate (11.16):

(11.18)

where s(i) corresponds to v(i) and s(i+l) to v(i) + 6V in the

numerical integration. When Rx > Ro' s(i)< 0, and Is(i+l)/.::Is(i)"

the sign ambiguity is resolvea by numerically integrating (11.16);

this is a very small class of cases, corresponding to orbits having

~ > 0 (discussed above). The solution to (11.17)-(11.18) is ofx

the form:

(11.19)

(11.20)

Solving (11.16)-(11.17) completely describes the slowing-down prob-

lem, including the large banana width effects and slowing-down

drifts in realistic non-circular, high-S equilibria.

in which the sign ambiguity is resolved from:

+, R > Rand s(i) > 0,x 0

sgn(si+l) = +, Rx > Ro,s(i) < 0, and Is(i+l)I>ls(i)j,

-, R < R ,x 0
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11.1.4 Calculation of Integrals

To numerically evaluate the flux-surface averages, it is

easiest to find f(v.,s.,~ k) on a specified rectilinear mesh,1 J x

where v. = i~v, s- = j~s, ~ k = k~~ for integral values of (i,j,k).1 J . x x
This is done by taking (v.,s.,~ k) as the starting point and in-1 J x

tegrating (11.17) backward in time to v = v , with correspondingo

values s(vo) = So and ~x(vo) = ~xo. Using the source rate,

s(v 's ,~ 0 ), found in Chapter 10, the distribution-function is ob-o 0 x

tained from (11.6). At each step in the v-integration, it is

necessary to check that ~x ~ ~edge; if ~x > ~edge' then the starting

point lies in a region of zero distribution function. That is, the

inward slowing-down drifts carry the fast ions about half of a

banana width inside the plasma edge, leaving no fast ions at the

edge. The important flux-surface-averaged quantities are as follows:

the alpha particle density profile,

f
3 3<n > = f d xd v

ex. ex.
(11.21)

the alpha-particle current density profile,

(11.22)

the profile of alpha heating power per ion,

f
. 3 3

<p > = f mvv d xd ve ex. e
3

n d x,e (11.23)
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(11.24)

and the net alpha particle current,

<I > = fII

2 3
eVllf d xd v,a (11.25)

--------. 3 . 3
where v. = v IT , and v = v IT , are the deceleration rates due to1 see s

ions and electrons, respectively. These integrals are evaluated in

the same way as the source rate integrals in Chapter 10, c.f.

(10.16)-(10.17).

11.1.5 Boundary Conditions

The boundary conditions, at the o-type and x-type stagnation

boundaries, are the only remaining aspect of this problem. Con-

sidering first the o-type stagnation boundary (lines A-B and F-G in

Fig. 8.1c), the corresponding surface in (v,s,~ ) space can bex

written using (8.4):

(11.26)

where B1 is given by the RHSof (8.4). The normal to this surfaceox

is VW,while the tangent to a slowing-down characteristic is ob-

tained from (11.2)-(11.4):

(11.27)
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+

Evaluating the dot product, ~W . dvjdt, using (11.26), and the

condition that B = B for an o-type stagnation orbit, givesox on

+ avJ. aw. aw.
~w . dvjdt = -- v + -- S + --- ~ = o.

av as a~x x
(11.28)

This condition implies that characteristics in the vicinity of the

o-type stagnation boundary (surface) mov~ parallel to the boundary,

i.e. have no component perpendicular to it. Consequently, no con-

servation condition is needed at this boundary. Looking next at

the counter-going x-type boundary (line BCDin Fig. 8.1c), one sees

from (11.8) that slowing drifts take particles away from this boundary

because s decreases monotonically. Thus, conservation conditions are

not needed at counter-going x-type stagnation boundary. Finally, at

the (x-type) pinch boundary (line HI in Fig. 8.1c), the s-drifts

(c.f eqn. 11.8) carry the characteristics in the direction of de-

creasing s (arrows labelled 3 in Fig. 8.2b). Since adjacent segments

across the pinch boundary are contiguous, velocity-space fluxes are

trivially conserved. Here, as is typically the case in method-of

characteristics solutions, the boundary conditions are implicitly

included in the solution.

11 .2 Results

The alpha particle profiles (c.f eqns. 11.21-11.25) have been

evaluated for three models. First, for comparative purposes, in-situ

deposition is used to determine the electron and ion heating rate

profi 1es :
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(11.29)

(11 .30)

Here , G = l-G., and G. is the fraction of Power into ions found byell .

Stix [54J:

dx

1+x3/2
(11.31)

For volvc > 1, (11.31) can be conveniently expanded in a Taylor

series and integrated to yield:

(
V

)( 1 1 1 1

)Gi = v: 1 - 4y + ly2 - 10y3 + 13y 4 - ...
(11.32)

3
where y = (v Iv ). For v Iv > 2, (11.32) converges well; foro c 0 c

2, (11.31) is evaluated numerically. In the second model,v Iv <o c

the ~- and ~ -drifts are set to zero, to demonstrate the size ofx

their effect on the profiles. The distribution function in this

approximation is:

(11.33)
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Finally, the large-banana-width slowing-down distribution, includ-

ing s- and ~ -drifts is obtained by integrating (11.17) via ax

second-order Runga-Kutta method.

The results of these three models for various equilibria (c.f.

Table 10.1) are shown in Figs. 11.2-11.3. The prominent peaked-

ness of the in-situ heating curves is strongly weighted by the alpha

source function, na = nln2 <av>12' as the alphas slow down at their

birth positions. Large banana-width orbits smear the heating

deposition over large regions of the plasma (c.f. Fig. 10.2). This

finite-banana spreading causes the flux-surface-averaged profiles

without drifts (~ =0, 2=0) to be less centrally peaked, but sub-
. x

stantially above the in-situ curve at the edge (~/~ > 0.6). The

flux-surface-averaged profiles including drifts (~ fO, 2fO) lie be-x

low the second case since the .inward ~ -drift causes slightly morex

core heating while depleting the edge.

The net positive alpha current (in the direction of the plasma

current) is due to finite banana-width effects (see Figs. 11.2-11.3).

From the values of <1 > shown in Table 10.1, we find an improvedII

estimate for the alpha current is:

1 'V. 3d >T .
II 11 S ( 11. 34)

The current contributions due to co- and counter-going orbits tend

to cancel, leaving mainly the trapped contribution (consistent with

Cordey's result [45J). For large banana-width trapped orbits, the

path length along the co-going part is longer than the counter-going
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part. This results in a net co-current, since crudely speaking, the

travel time goes like (connection length)/v. More realistically,

most trapped particles have a net co-current (as described above),

while a few trapped ions have a net counter-current. The x-

stagnation orbits are an example of the latter because the bounce

time contribution becomes infinite at the pinch point, where the

motion is counter-going. From eqn. E.13 (see Appendix E), the re-

sulting current is then I ~ N Zevn < 0, where N is the number ofssp s

particles on the x-stagnation orbit and np is the cosine of the

pitch angle at the pinch point. However, the bounce time is very

long compared to the coulomb scattering time, implying that most ions

are scattered off x-stagnation orbits. Summing these co- and counter-

current contributions over all of phase space (c.f. eqn. 11.25)

yields a net co-going current. As expected, the additional effects

of the negative s-drift decreases the alpha current, in comparison to

the no-drift case. The inward ~ -drift depletes the current densityx

at the edge, while making the inner <J > profile more peaked.II

The background plasma response is not included in the c'alcula-

tion of the alpha particle current. Ohkawa [119J first suggested

that fast ion injection in the co-going direction could form a toroi-

dal plasma current. More recently, Hirshman [91J used a variational

technique to find the Green1s function for the plasma current re-

sponse to fast ions, while Cordey et al. [92J obtained the induced

plasma current via a perturbation method. The additional effect of
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trapped electrons in the banana regime has been evaluated by Start

et al. [93J. The net fast-ion-driven current in a circular cross-

section tokamak is [114J:

-

l
Z 1.46 Z

(
r
) ~ ( ) 1.2

(
V

)
2

]Idriven - Ifast 1 - z--- + Z R A Zeff - z--- V- ' (11.35)eff eff eff e

where A(Zeff)~l + 0.7/Zeff[60J, Z is the fast ion charge, and ve

is the electron thermal speed. The first term on the RHSof (11.35)

is the a-current, <I >, calculated above. The second term is the
II

"shielding current" due to streaming of electrons, caused by col-

lisional momentumtransfer from the fast ions. The third term des-

cribes the effect of banana-trapped electrons. The last term accounts

for electron-electron collisions, for the fact that the electron dis-

tribution cannot be represented by a displaced-Maxwellian, and for

the velocity dependence of the friction force between the electrons

and fast ions. The a-driven current, in turn, can serve as a seed

current for the bootstrap effect [94J. Considering practical heating

rates and seed current values, the total current, Itot' might become

approximately 10 times the seed current, Id . [95J. This isrlven

significant since the a-current might then drive part of the steady-

state plasma current, reducing the volt-see requirements for a

reactor [90J, though not affecting the volt-see requirements for

start-up.

Stacey and Sigmar [117J have determined the full response of a

non-circular axisymmetric tokamak plasma to particle and momentum

sources. They find that a net toroidal momentuminput produces an
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additional contribution to the toroidal current density, beyond

those discussed above. One such source would be the a-driven,

bootstrap-enhanced current, Itot' Alpha particle losses to the

tokamak first wall are another current input [16J (due to a net

loss of momentum). However, such losses are unimportant « 1%

contribution) in the large plasmas of interest here. A proper

evaluation of these effects including the non-circular cross sec-

tion is beyond the scope of this work.


