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We present a model-independent, data-driven approach to quantify dynamical changes in nonlinear,
possibly chaotic, processes with application to machine failure forewarning. From time-windowed
data sets, we use time-delay phase-space reconstruction to obtain a discrete form of the invariant
distribution function on the attractor. Condition change in the system’s dynamic is quantified by
dissimilarity measures of the difference between the test case and baseline distribution functions. We
analyze time-serial mechanical~vibration! power data from several large motor-driven systems with
accelerated failures and seeded faults. The phase-space dissimilarity measures show a higher
consistency and discriminating power than traditional statistical and nonlinear measures, which
warrants their use for timely forewarning of equipment failure. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1667631#

One of the most important problems in time-series analy-
sis is the suitable characterization of system dynamics for
timely, accurate, and robust condition assessment. In par-
ticular, timely forewarning of failures in machinery and
industrial equipment is essential to avoid down-time,
costly repairs, and—possibly—catastrophic events. Ma-
chine processes display complex, nonstationary, and noisy
behaviors that may range from „quasi-…periodic to com-
pletely irregular „chaotic… regimes. Even when their be-
havior becomes very irregular „e.g., tool chatter…, it is
reasonable to assume that—for all practical purposes—
most of these systems have low dimensionality. As a re-
sult, analysis of their dynamical features can be done via
traditional nonlinear measures„TNM …, such as Lyapunov
exponents, Kolmogorov entropy, and correlation dimen-
sion. While these measures are adequate for discriminat-
ing between clear-cut regular and chaotic dynamics, they
are not sufficiently sensitive to distinguish between
slightly different chaotic regimes, especially when the
data are noisy andÕor limited. Typically, machine dynam-
ics fall into this latter category, creating a massive road-
block to failure prognostication. To address this problem,
we developed a new approach that is better suited to cap-
ture changes in the underlying dynamics. We start from
robust process-indicative data, recognizing that some
data capture the full richness of the dynamics while other
data may not. The data are checked for quality, and in-
adequate data„e.g., lost data points, intervals with un-
changed signal amplitude, low sampling rate, excessive
periodic content, excessive noise, saturation at high or
low limits, and inconsistent signal amplitude across
datasets in the test sequence… are not analyzed. Accept-
able data are filtered to remove confounding artifacts
„e.g., sinusoidal variation in three-phase electrical sig-
nals…, and the artifact-filtered time-serial data are then
used to recover the essential features of the dynamics via
standard time-delay phase-space reconstruction. One re-
sult of this reconstruction of the underlying dynamics is a
discrete approximation of the distribution function „DF…

on the attractor. If the dynamical state is unaltered, the
geometry of the attractor and the visitation frequencies of
its various points do not change. This DF represents the
baseline. Condition change is established by comparing
the baseline DF to subsequent test-case DFs via new mea-
sures of dissimilarity, namely theL 1 distance andx2 sta-
tistic between two DFs. A clear trend in the dissimilarity
measures over time indicates substantial departure from
the baseline dynamics, thus signaling condition change.
Depending on its severity, this departure also can be in-
terpreted as forewarning of an impending failure. We il-
lustrate this approach on triaxial acceleration data from
machinery tests for seeded faults and accelerated failures.
Our method yields robust nonlinear signatures of degra-
dation and its progression, allowing earlier and more ac-
curate detection of the machine failure in comparison to
TNM.

I. INTRODUCTION

Condition-based~predictive! maintenance relies heavily
on failure prognostication, based on analysis of machine
data. The major roadblocks to accurate, timely, and robust
prognostication include:1 ~a! incomplete understanding of
fault evolution and failure physics;~b! lack of predictive
methodologies for unsteady failure signatures;~c! ignorance
about controlling parameters; and~d! unavailability of test
facilities to emulate a real operating environment. Our
present approach is far from proposing a complete and uni-
versally applicable solution to this problem, but does offer a
partial solution. In particular, we address items~a!–~b! by
quantifying the ~nonstationary! condition change as a se-
quence of nonlinear statistical signatures; item~c! by associ-
ating change in the controlling parameter with the equipment
response; and item~d! by designing, running, and analyzing
tests that are similar to in-plant operations.

Machine dynamics2–27has a long history.11 Metal cutting
forces during machine tool chatter have long been recog-
nized as ‘‘very complex’’ and ‘‘very far from sinusoidal,’’
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implying nonlinear dynamics.23 Tlusty12,18,20 published ex-
tensive experimental~in!stability diagrams for turning, mill-
ing, boring, hobbing, and planing. Quet al.16 used nonlinear
measures to diagnose dynamics, using vibration data from
rotating machinery~turbogenerator and compressor!. Bukka-
patnamet al.3 analyzed data from lathe cutting and found
low dimensional, chaotic features. Our previous work ana-
lyzed the nonlinear dynamics of machine tool chatter,28,29

and used phase-space~PS! dissimilarity to detect condition
change in various physical processes, namely, distinguishing
different drilling conditions~tool wear! from spindle motor
current of a machining center; distinguishing~un!balanced
centrifugal pump states from electrical motor power; and
forewarning of a bellows coupling failure in a rotating drive
train from motor current.30 Our more recent work used
phase-space dissimilarity to determine condition change in
machines due to seeded faults and accelerated failure
progression.31,32,34 Delogu, Rustici, and co-workers found
hyperchaos35 and intermittent chaos36 in ball milling.
Pfeiffer’s analysis37 showed that bifurcations and chaos may
be generated by various mechanical processes, such as stick-
slip due to dynamic/static friction and surface impacts; addi-
tional processes include surface deformation and material
removal/wear.12,18,20

To date, most of the effort on condition change assess-
ment and forewarning has focused on Fourier spectra, con-
ventional statistical measures~CSM!, and traditional nonlin-
ear measures~TNM!, such as Kolmogorov entropy,
correlation dimension, and Lyapunov exponents. While these
descriptors discriminate adequately between clear-cut regular
and chaotic dynamics,38–41 they are not always sufficiently
sensitive to distinguish between slightly different chaotic re-
gimes, especially when data are limited and/or noisy. Indeed,
our initial analysis of machine data28 used TNM, yielding
inconsistent detection and event forewarning. Those results
indicated that detection of meaningful information in attenu-
ated, noisy, artifact-infested signals requires more sensitive
and discriminating measures. Our more recent work showed
by direct comparison that phase-space dissimilarity measures
~PSDM! have consistently better sensitivity and discrimina-
tion power for event forewarning than TNM.30,31

The remainder of this paper is organized as follows. Sec-
tion II reviews our methodology, using various measures for
time series analysis: CSM, TNM, and PSDM. Moreover, we
present the details of a recently developed32 statistical test
for failure forewarning and onset. Section III presents our
results for various machine data. Section IV summarizes the
results and presents our conclusions.

II. APPROACH

Machine processes display rich dynamics, including
quasiperiodicity, nonlinearity, and occasional chaos. Using
recent advances in nonlinear science to capture and interpret
such features, our analysis of condition change relies on a
few basic assumptions, namely:~i! the underlying machine
dynamics are essentially deterministic;~ii ! machine pro-
cesses behave as a low-dimensional nonlinear, possibly cha-
otic dynamical system;~iii ! a single channel of data can cap-

ture the main features of nonlinear dynamics.~Phase-space
reconstruction of multichannel data is certainly possible, and
is the subject of future work.!

Several practical caveats are also in order. We assume
adequate quality data. For example, an insufficient amount of
time-serial data does not adequately sample the attractor,
thereby degrading the sensitivity of the dissimilarity
measures.42,43 Likewise, the data sampling rate,f s , must be
much larger than the machine dynamical rate,n, which in
turn must be much larger in comparison to the inverse of the
time, T, to failure: f s@n@1/T. We assure the validity of this
assumption by requiring that the first minimum in the mutual
information function occur at four~or more! time steps,
where one time step corresponds tot51 fs. Usually, the
analysis is confounded by artifacts in the data. Based ona
priori information about the underlying dynamics, we re-
move such artifacts, such as sinusoidal variation in three-
phase electrical power or resonant oscillations in vibration
power. Also, parameters for the phase-space reconstruction
must be chosen carefully for robust and sensitive indication
of condition change. This part of the methodology is still too
analyst-intensive to be implementable on an industrial scale;
practical prognostication must be less dependent on interac-
tion with or guidance from the human expert. Finally, the
applicability of the present methodology is limited toretro-
spectiveanalysis ofarchival data for seeded faults and accel-
erated failures, which are well characterized under appropri-
ate test conditions. A practical application of this approach
will require prospectiveanalysis of (near-)real-time data.
The separation between the present state of our methodology
and the real-world need is still large and will require substan-
tial additional development.

The general approach is outlined next. We first acquire a
process-indicative scalar signal,e, which is sampled at equal
time intervals,t, starting at an initial time,t0 , yielding a
time-serial sequence ofN points,ei5e(t01 i t). We remove
artifacts from the data~e.g., sinusoidal variation in three-
phase motor power! with a zero-phase quadratic filter44,45

that performs better than conventional filters. This filter uses
a moving window of 2w11 points of data, with the same
number of data points,w, on either side of a central point.
We fit a parabola in the least-squares sense to these data
points, and use the central point of the fit to estimate the
low-frequency artifact,f i . The residual~artifact-filtered! sig-
nal, gi5ei2 f i , has essentially no low-frequency artifact ac-
tivity. All subsequent analysis uses this artifact-filtered data,
gi .

We convert each artifact-filtered value,gi , into a sym-
bolized value,si , namely one ofS different equiprobable
integers, 0,1,...,S21. These symbols are formed by ordering
all N of the base case artifact-filtered time-serial data points
from the smallest to largest value. The firstN/S of these
ordered values correspond to the first symbol, 0. Ordered
data values (N/S)11 through 2N/S correspond to the sec-
ond symbol, 1, and so on. Equiprobable symbols have non-
uniform partitions in the signal amplitude with the same oc-
currence frequency ofgi values by construction, and thus
have no information about the PS structure. In contrast, sym-
bols with uniform partitions~uniform symbols! carry inher-
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ent dynamical structure prior to the PS reconstruction. Thus,
one advantage of equiprobable symbols is that dynamical
structure arisesonly from the PS reconstruction, as described
below. Moreover, large negative and large positive values of
gi have little effect on equiprobable symbolization, but dra-
matically change the partitions for uniform symbols. Infor-
mation theoretic measures of the PS-DF~e.g., mutual infor-
mation function! are smooth functions of the reconstruction
parameters for equiprobable symbols, but are noisy functions
of these same parameters for uniform symbols. For these
reasons, equiprobable symbols provide better discrimination
of condition change than uniform symbols.

A. Conventional statistical measures

CSM have long been used for general characterization.
The most common statistical measures are the mean:ḡ
5S igi /N, where the sum overi, S i , spans allN of the
points in the analysis window, and the sample standard de-
viation, s, which is s25S i(gi2ḡ)2/(N21). Higher
moments46 about the mean include skewness,s5S i(gi

2ḡ)3/Ns3, and kurtosis,k5S i(gi2ḡ)4/Ns423. A large
positive ~negative! value of skewness corresponds to a
longer, fatter tail in the distribution about the mean to the
right ~left!. Kurtosis measures the amount of flattening (k
,0) or excess peakedness (k.0) about the mean. Another
measure is the average number of time steps per wave cycle
~frequently used in engineering analysis of sampled data!,
m5N/@(nc21)/2#'2N/nc , for nc@1. Here,nc is the av-
erage number of mean crossings; the two successive mean
crossings delimit one-half of a wave period. The position of
the first zero in the autocorrelation function, as defined by
A( j )5S i(gi2ḡ)(gi 1 j2ḡ)/(N2 j )s2, is also a useful quan-
tity. Nevertheless, while CSM are useful in the analysis of
linear processes, they provide inconsistent discrimination for
detection of condition change in nonlinear systems. We in-
clude them here for completeness and comparison.

B. Traditional nonlinear measures

The advent and rapid development of nonlinear and cha-
otic dynamics over the last few decades has produced new
and powerful measures for characterization via PS
reconstruction,39,40,47which uses time-delay vectors that are
formed from the artifact-filtered, symbolized data,y( i )
5@si ,si 1l ,...,si 1(d21)l#. The choice of lag,l, and embed-
ding dimension,d, determines how well the PS reconstruc-
tion unfolds the dynamics. Too high an embedding dimen-
sion could result in overfitting of real data with finite length
and noise. Moreover, different observables of a system con-
tain unequal amounts of dynamical information,38 implying
that PS reconstruction could be easier from one variable, but
more difficult or impossible from another. Our analysis seeks
to balance these caveats for finite-length noisy data.

We use the phase, traditional nonlinear measures~TNM!,
as distinct from the PS measures, as defined in the next sub-
section. We choose three of the most-frequently-used TNM,
as potential indicators of dissimilarity, namely:~i! the first
minimum in the mutual information function as a measure of
decorrelation time,~ii ! the correlation dimension as a mea-
sure of complexity, and~iii ! the Kolmogorov entropy as a

measure of predictability. We describe these measures next,
with more detailed definitions and characterizations in the
references cited below.

The mutual information function~MIF! measures aver-
age bits of information that can be inferred from one mea-
surement about a second, as a function of the time delay
between the two signals. Shannon and Weaver48 developed
the MIF, which was later applied to time series.49 One set of
measurements is q5$q1 ,q2 ,...,qN%, with associated
occurrence probabilities,P(q1), P(q2),...,P(qN). A second
set of measurements isr 5$r 1 ,r 2 ,...,r N%, with a time delay
relative to Q, and with occurrence probabilities
P(r 1),P(r 2),...,P(r N). P(qi ,r j ) is the joint probability that
both states occur simultaneously. The first minimum in the
MIF, M1 , gives an average decorrelation time. Then, the
MIF is defined asI (q,r )5I (r ,q)5H(q)1H(r )2H(r ,q),
where H is entropy: H(q)52S i P(qi)log2@P(qi)# and
H(q,r )52S i P(qi ,r j )log2@P(qi ,r j)#.

The maximum-likelihood correlation dimension50,51 is
D52M $S i j ln@(dij /d02dn /d0)/(12dn /d0)#%

21, where M is
the number of randomly-sampled pairs of phase-space
points. The maximum-norm distance between PS-point pairs,
i and j, is d i j 5max(0<k<m21)ugi1k2gj1ku, wherem is the
average number of data points per cycle, as defined above
under CSM. The distancedn is the scale length that is asso-
ciated with noise. Distances are normalized with respect to a
nominal scale length,d0 , which is chosen to balance be-
tween sensitivity to local dynamics~typically atd0<5a) and
avoidance of excessive noise~typically at d0>a). Here, the
symbola denotes the absolute average deviation as a robust
indicator of variability,52 a5S i ugi2ḡu/N.

The Kolmogorov entropy~K-entropy!, K, is the rate of
information loss per unit time~bits per second!, and is the
sum of the positive Lyapunov exponents. Positive, finiteK is
generally viewed as a clear indication that the process mani-
fests chaotic dynamics. Very large entropy indicates a sto-
chastic~totally unpredictable! phenomenon.K is estimated
from the average number of time steps,bi , for two PS
points, initially within d<d0 , to diverge tod.d0 . We use
the maximum-likelihood form of Schoutenet al.,52 K
52 f s log(121/b), with b5S ibi /M for M point pairs. The
data-sampling rate isf s .

TNM capture nonlinear features of the underlying pro-
cess, but do not offer a very sensitive tool for detection of
dynamical change. The main reason is that TNM, like CSM,
are expressed as a sum~or integral! over~a region of! the PS,
which averages all dynamical details into one number. Con-
sequently, two~very! different dynamical regimes may lead
to very close, or even equal measures. Moreover, the usual
definitions ofK-entropy and correlation dimension are in the
limit of zero scale length. However, all real data have noise,
and even noiseless model data are limited by the finite pre-
cision computations. Thus, we use a finite length scale that is
somewhat larger than the noise (d052a), at which to report
the values ofK andD. Consequently, our values ofK andD
do not capture dynamical complexity at length scales smaller
thand0 and have smaller values than expected for the zero-
scale-length limit (d0→0).
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C. Phase-space dissimilarity measures

To overcome some of the limitations of CSM and TNM
as discriminators of condition change, we introduced phase-
space dissimilarity measures~PSDM!,30–34which we review
briefly for the reader’s convenience. After reconstructing the
dynamics~as discussed above!, we use appropriate symbol-
ization ~also as described above! to partition the phase-space
~PS! into Sd hypercubes or bins. By counting the number of
PS points that occur in each bin, we obtain the distribution
function ~DF! as a discretized density on the attractor. We
denote the population of thej th DF bin,Rj , for the base case
~nominal state!, and Sj for a test case~off-normal state!,
respectively. Comparison of the test case to the base case
involves measuring the difference betweenRj with Sj by the
x2 statistic andL1 distance:

x25(
j

~Rj2Sj !
2/~Rj1Sj !, ~1!

L5(
j

uRj2Sj u. ~2!

The summations in Eqs.~1!–~2! run over all of the populated
PS cells. Thex2 statistic is one of the most powerful, robust,
and widely used tests for dissimilarity between two DFs.
This x2 is not an unbiased statistic for accepting or rejecting
a null statistical hypothesis,45 but rather is a measure of dis-
similarity between the two DFs. TheL1 distance is the natu-
ral metric for DFs by its direct relation to the total invariant
measure on the attractor. These measures account for
changes in the geometry and visitation frequency of the at-
tractor. Consistent calculation obviously requires the same
number of points in both the base case and test case DFs,
identically sampled; otherwise the distribution functions
must be properly rescaled.

The accuracy and sensitivity of the PS reconstruction
can be enhanced by connecting successive PS points as pre-
scribed by the underlying dynamics,y( i )→y( i 11). Thus,
we obtain a discrete representation of the process flow39,40as
a 2d-dimensional, connected-phase-space~CPS! vector,
Y( i )5@y( i ),y( i 11)#, that is formed by adjoining two suc-
cessive vectors from thed-dimensional reconstructed PS. As
before,R and S denote the CPS DFs for the base case and
test case, respectively. We then define the measures of dis-
similarity between these two CPS DFs via theL1-distance
andx2 statistic, as before42,43,53–55

xc
25(

jk
~Rjk2Sjk!2/~Rjk1Sjk!, ~3!

Lc5(
jk

uRjk2Sjku. ~4!

The subscriptc denotes CPS measures; the subscripts,j and
k, denote the initial,y( i ), and final,y( i 11), PS states, re-
spectively. The valuel51 results ind21 components of
y( i 11) being redundant with those ofy( i ); we allow this
redundancy to accommodate other data such as discrete
points from two-dimensional maps. CPS measures have
higher discriminating power than their nonconnected coun-

terparts. Indeed, we can prove42 that these measures satisfy
the following inequalities:x2<L, xc

2<Lc , L<Lc , andx2

<xc
2.
We call the quantities in Eqs.~1!–~4!, phase space dis-

similarity measures~PSDM!. Their definitions show that
PSDM can discriminate between different chaotic regimes.
Such discrimination is not possible with TNM. The reason is
rather simple: discrimination by TNM is based on a differ-
ence of averages, while discrimination via PSDM is based on
averaging the absolute value of differences.

The disparate range and variability of these measures are
difficult to interpret, especially for noisy data. We obtain a
consistent means of comparison via renormalized dissimilar-
ity measures~RDM!,42,43 which are defined byU(V)5uVi

2V̄u/s, as the number of standard deviations that the test
case deviates from the base case mean.V denotes a dissimi-
larity measure from the set,V5$L,Lc,x

2, andxc
2%. We ob-

tain the mean value,V̄, of the dissimilarity measure by com-
parison among theB(B21)/2 unique combinations of theB
base case cutsets, with a corresponding sample standard de-
viation s. We subsequently compare each nonoverlapping
test case cutset to each of theB base case cutsets, and obtain
the corresponding average dissimilarity value,Vi , of the i th
cutset for each dissimilarity measure. A statistically signifi-
cant trend in the RDM indicates equipment degradation for
failure forewarning.

The best choice of the parameter set,$N,w,S,d,B,l%,
depends not only on the system, but also on the specific data
under consideration. We choose a ‘‘reasonable’’ value for the
number,B, of base case cutsets, 5<B<10, as a balance
between a reasonably short quasistationary segment of ‘‘nor-
mal’’ dynamics and a sufficiently long internal for statistical
significance. We find that the longest analysis window ofN
points is best, limited by the total length of the data. Our
analysis proceeds as follows:~a! choose the parameter set,
$w,S,d,l%; ~b! compute the renormalized PS dissimilarities
for the specific machine data; and~c! systematically search
over the parameters,$w,S,d,l%, to find the best forewarning
indication.

Our previous work30–33 found that RDM are sensitive
measures of condition change, but that further improvements
are needed to give an explicit indication of failure. Thus, we
seek a more robust and specific end-of-life~EOL! forewarn-
ing. Extensive application of the PSDM approach33,34 shows
that all four of the PSDM display similar trends, as illus-
trated by the analysis of the machine data below. This obser-
vation suggests the definition of a composite measure,Ci , as
the sum of the four renormalized PSDM for thei th dataset:

Ci5U~x2!1U~xc
2!1U~L !1U~Lc!. ~5!

This composite measure is expected to be more robust than
any one of the PSDM, while accurately indicating condition
change. The end-of-life indication from this composite mea-
sure is then quantified as follows. We use contiguous, non-
overlapping windows ofCi to obtain a least-squares straight-
line fit:

yi5ai1b. ~6!
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The window length ofn510 values ofCi ~andyi below! is
chosen consistent with the number of cutsets in each snap-
shot (B510). Other values ofB give inferior indication of
condition change. Next, the variance,s̃2, measures the vari-
ability of the Ci values about this straight-line fit:

s̃25(
i

~yi2Ci !
2/~n21!. ~7!

Finally, G measures the variability of nextn values ofCi

about an extrapolation of this straight-line:

G5(
i

~yi2Ci !
2/s̃2. ~8!

Other fits ~quadratic, cubic, and quartic! are inappropriate,
because they extrapolate poorly outside the fitting window.
The index,i, in Eqs.~6!–~8! runs over theB values ofCi and
yi . G has the form of a chi-squared statistic, but we do not
use that notation to avoid confusion with the twox2 PSDM.
A statistical test forG would involve ~for example! the null
hypothesis that deviations from the straight-line fit are nor-
mally distributed. Analysis of accelerated test data uses Eqs.
~5!–~8! to extract both forewarning and an indication of fail-
ure onset. We present the results of this analysis next.

III. ANALYSIS OF MACHINE DATA

Without a model, the ‘‘correct’’ choice of process-
indicative data can be justified onlya posteriori. As a prac-
tical matter, this choice is limited to measurable process vari-
ables. Moreover, the analyst’s choice must recognize that not
all observables capture the same amount of information.38

Typical machine data are triaxial acceleration,a, and three-
phase electrical current,I i , and voltage,Vi . From these
data, we calculate the instantaneous mechanical~vibration!
or electrical power,P}a"*adt or S i I iVi , respectively. The
use of vibration or electrical power is certainly not unique.
Indeed, one component of acceleration~or current or volt-
age! may provide an adequate process-indicative signal to
extract condition change. The use of power has the advan-
tage that only one channel of data is analyzed, instead of
several channels, to find the best signal for change discrimi-
nation. This paper presents details of the forewarning analy-
sis viavibration power. Similar analyses of three-phase elec-
trical power, and individual channels of current, voltage,
acceleration, velocity, and torque are described in Refs. 32
and 34.

For this analysis, the datasets for each test in the se-
quence were concatenated into a single long dataset. We
verify data quality by checking for: the proper number of
data points, any intervals with unchanged signal amplitude,

FIG. 1. Results for EPRI air-gap offset seeded fault:~a! vibrational power
~P! versus time~ms!; ~b! minimum (PN), negative of the absolute average
deviation (2a), standard deviation~s!, and maximum (PX) of P for each
test; ~c! skewness~s! and kurtosis~k!; ~d! number of time steps per cycle
~m!; ~e! first minimum in the mutual information function (M1) and first
zero in the autocorrelation (Z1); ~f! correlation dimension~D!; and ~g!
Kolmogorov entropy~K!.

FIG. 2. Plots of the four nonlinear dissimilarity measures for the airgap-
offset seeded-fault from vibration power with the following phase-space
parameters:d53, S53, l511. Dataset #1 is for the nominal~no fault!
state. Datasets #2–3 are for two different airgap-offset faults.
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adequate sampling rate, excessive periodic content, exces-
sive noise, saturation at high or low limits as an indicator of
improper data scaling, and consistent signal amplitude across
datasets in the test sequence. The present analysis applies
only to data that pass these quality tests.

The Electric Power Research Institute~EPRI! sponsored
work on predictive maintenance for large motors, simulating
common failures via seeded faults.56 Present analyses use
triaxial ~vibration! acceleration data from inboard~IB! motor
location, because all data from the outboard motor location
failed the quality check. Data were recorded in 1.5-s snap-
shots at 40 kHz~60 000 points per dataset!. Our analysis
averages the measures over five subsets (B55) of 12 000
points.

A. EPRI air-gap seeded fault

One EPRI test56 involved operator-imposed air-gap off-
sets in the rotor-stator alignment. The test bed was a three-
phase, 800-HP sleeve-bearing, form-wound Allis Chalmers
induction motor, rated at 4160 V and 100 A at 60 Hz with 10
poles, 94 copper rotor bars, 40 stator slots, running at a nor-
mal speed of 710 rpm. The first dataset of test sequence
involves the motor running in its nominal state. Two differ-

ent air-gap offset seeded faults were then imposed via prein-
stalled jackscrews. The second dataset imposed a static in-
board air-gap offset of 8 mils from the nominal value of 30
mils. The third dataset retained the first fault, and added a
static outboard air-gap offset by 20% in the opposite direc-
tion from the inboard shift, resulting in the rotor being
skewed relative to the stator. Figure 1~a! shows a 20 ms
segment of vibration power data with complex, nonlinear
features. The corresponding CSM@Figs. 1~b!–1~e!# and
TNM @Figs. 1~e!–1~g!# do not provide a clear indication of
the increasing severity of the seeded fault. In sharp contrast,
Fig. 2 shows that all four PSDM rise linearly with increasing
fault severity, yielding good change discrimination.

B. EPRI rotor-bar seeded fault

A second EPRI~Ref. 56! test involved operator-imposed
partial or total cuts in the rotor bars. The test bed was the
same Allis Chalmers motor. The test began with the motor
running in its nominal state~first dataset!, followed by pro-
gressively more severe broken rotor bars. The second dataset
involved one rotor bar cross section cut 50% in half at the
11:00 position. The third dataset was for the same rotor bar
now cut through 100%. The fourth dataset was for a second

FIG. 3. Results for EPRI broken-rotor seeded fault:~a! vibration power~P!
versus time~ms!; ~b! minimum (PN), negative of the absolute average
deviation (2a), standard deviation~s!, and maximum (PX) of P for each
test; ~c! skewness~s! and kurtosis~k!; ~d! number of time steps per cycle
~m!; ~e! first minimum in the mutual information function (M1) and first
zero in the autocorrelation (Z1); ~f! correlation dimension~D!; and ~g!
Kolmogorov entropy~K!.

FIG. 4. Plots of the four nonlinear dissimilarity measures for the broken-
rotor seeded-fault vibration power data versus fault severity~number of
broken rotor bars!. Dataset #1 is for the nominal~no fault! state. Dataset #2
is for the 50% cut in one rotor bar. Dataset #3 is for the 100% cut in one
rotor bar. Dataset #4 is for two cut rotor bars. Dataset #5 is for four cut rotor
bars. The PS reconstruction parameters are:d53, S5130, andl521.
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rotor bar cut 100% at the 5:00 position, exactly 180° from, in
addition to the first rotor failure. The fifth dataset was for two
additional rotor bars cut adjacent to the original 11:00 bar,
with one bar cut on each side of the original, yielding four
bars completely open. The complete test sequence then cap-
tured an exponentially growing fault, from nominal opera-
tion, to 1

2, to 1, to 2, to 4 broken rotors bars. Figure 3~a!
shows a 20 ms segment of vibration power data with com-
plex, nonlinear features. The corresponding CSM@Figs.
3~b!–3~e!# and TNM @Figs. 3~e!–3~g!# do not provide a clear
indication of the exponentially-growing severity of the
seeded fault. Figure 4 shows that all four PSDM rise linearly
with the increasing fault severity, thus yielding good change
discrimination.

C. Analysis of turn-to-turn-short seeded fault data

A third EPRI test56 involved operator-imposed turn-to-
turn shorts in a motor. The test bed was a three-phase, 500-
HP, sleeve-bearing, form-wound General Electric induction
motor, rated for 4000 V at 60 Hz, with 84 rectangular copper
rotor bars, 6 poles, and 108 stator slots, running at a nominal
speed of 1185 rpm. The first dataset was from the motor,
running in its nominal state. A second dataset involved a

turn-to-turn~2.70-ohm! short by installing a large screw be-
tween two turns. A third dataset involved a more severe turn-
to-turn ~1.35-ohm! short by installing a smaller screw be-
tween two turns. The analysis sequence goes from largest
turn-to-turn resistance~infinite resistance, corresponding to
no short!, to smaller~2.7 ohms!, to smallest~1.35 ohms!,
corresponding to increasing severity in the fault. Figure 5~a!
shows a 20 ms segment of vibration power data with com-
plex, nonlinear features. The corresponding CSM@Figs.
5~b!–5~e!# and TNM @Figs. 5~e!–5~g!# show some consis-
tency with the increasing severity of the seeded fault. The
minimum (PN) rises and maximum (PX) falls @Fig. 5~b!#
monotonically over the test sequence. Kurtosis decreases and
skewness increases monotonically@Fig. 5~c!# over the test
sequence. Linear increases occur in the average number of
time steps per cycle@Fig. 5~d!# over a very narrow range
~7.2–7.6!, and the first zero in the autocorrelation function
@Fig. 5~e!#. Figure 6 shows that all four PSDM rise linearly
with the increasing fault severity, thus yielding good change
discrimination.

D. Analysis of gear-failure acceleration data

The Pennsylvania State University~PSU! operates the
Applied Research Laboratory,57 including the Mechanical
Diagnostics Test Bed~MDTB!. A 30-HP, 1750-RPM, alter-

FIG. 5. Results for EPRI turn-to-turn seeded fault:~a! vibration power~P!
versus time~ms!; ~b! minimum (PN), negative of the absolute average
deviation (2a), standard deviation~s!, and maximum (PX) of P for each
test; ~c! skewness~s! and kurtosis~k!; ~d! number of time steps per cycle
~m!; ~e! first minimum in the mutual information function (M1) and first
zero in the autocorrelation (Z1); ~f! correlation dimension~D!; and ~g!
Kolmogorov entropy~K!.

FIG. 6. Plots of the four nonlinear dissimilarity measures from the turn-to-
turn short seeded-fault vibration power. Dataset #1 is for the nominal~no
fault! state. Dataset #2 is for the 2.7-ohm short. Dataset #3 is for the 1.35-
ohm short. The PS reconstruction parameters are:d52, S56, l557.
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nating current~ac!, electric motor drives a gearbox, which is
loaded by a 75-HP, 1750-RPM ac~absorption! motor. A digi-
tal vector drive unit controls the current to the absorption
motor for torque variation up to 225 ft-lbs. The MDTB can
test gear ratios from 1.2:1 to 6:1 in the 5–20 HP range at 2–5
times the rated torque of single and double reduction indus-
trial gearboxes. The motors and gearbox are mounted and
aligned on a bedplate, which is mounted on isolation feet to
prevent vibration transmission to the floor. The shafts are
connected with both flexible and rigid couplings. Torque lim-
iting clutches on both sides of the gearbox prevent transmis-
sion of excessive torque during a gear jam or bearing seizure.
Torque cells on both sides of the gearbox directly monitor
the loads. The protocol for this accelerated failure test in-
volves a break-in period at the nominal~13! load ~530 ft-
lbs! for 1 h, followed by twice~23! or three times~33! the
normal load, as shown in Table I, which also includes the
time to failure (Tfail). The EOL failures typically include
pinion damage, broken teeth, and a sheared shaft. Ten-second
snapshots of tri-axial accelerometer data were sampled at 52
kHz; see Table I for the interval~Dt! between each snapshot.
We convert the accelerometer data during the overload pe-
riod into vibration power for this analysis. As before, the
CSM and TNM show little if any failure forewarning,34 so
we do not show them here.

Figure 7 shows that all four PSDM rise systematically
@Figs. 7~a!–7~d!# to provide failure forewarning. Indeed, the
abrupt increase in all four PSDM at 160 h clearly forewarns
of the imminent failure. We obtain this forewarning by quan-
tifying significant deviations from the general trend via ap-
plication of Eqs.~5!–~8!. Chi-squared statistical tables give
the corresponding value ofG<28.5 for n510 degrees of
freedom with a probability of one out of the 650 snapshots or
(1/650;1.531023). However, we observe many instances
of G.28.5 @solid curve in Fig. 7~f!#, which arise from dy-
namical correlations in the accelerometer data, thus violating
the requirement for independent, identically distributed
samples.

Instead, we useG as arelative EOL measure. Although
G varies erratically, we observe a systematic trend in the
running maximum ofG, Gmax, as shown by the dashed curve
in Fig. 7~f!, neglecting~for example! the first sixG-values to
avoid startup transients. This running maximum steadily in-
creases in modest increments to 376 over the first 159.75 h
of the test, while intermediate values ofG fall well below the
running maximum. Subsequently, a large increase occurs in
Ci at 160 h, which produces a correspondingly large rise in
G and therefore inGmax. The resulting jumps inGmax are
quantified by the chain curve~–•–! in Fig. 7~f!, as the ratio,

r 5(Gmax)k /(Gmax)k21, of the current maximum inG,
(Gmax)k , to the previous maximum inG, (Gmax)k21. G rises
to 2493 at 160 h, with a corresponding ratio,r 56.62, while
the largest non-EOL ratio isr 52.22 at 28.5 h. We find that
the forewarning values ofCi across the various MDTB tests
are not consistent, but that the values ofGmax and r consis-
tently do provide both forewarning of the failure and indica-
tion of the failure onset, as shown in Table I:~a! the largest
non-EOL value ofr (r NEOL) and the corresponding value of
G (GNEOL); ~b! values ofr (r EOL) andG (GEOL) that indi-
cate the EOL, and the matching time (TEOL /TFAIL); ~c! the

TABLE I. Summary of MDTB test results.

Run
Over-
load

Dt
min r NEOL GNEOL r EOL GEOL

TEOL

TFAIL GONSET

TONSET

TFAIL

TFAIL

h

36 23 15 2.22 376 6.62 2493 0.985 244655 0.998 162.50
37 33 1 1.79 333 8.07 2690 0.956 16284 0.996 8.55
38 33 1 6.20 374 11.71 13486 0.938 48379 0.990 4.02
39 23 1 2.32 853 3.89 5231 0.980 5231 0.980 8.60
39 33 1 2.88 1151 29.03 33415 0.972 44552 0.994 8.60

FIG. 7. Phase-space dissimilarity measures versus time for the MDTB ac-
celerated failure test~run #36! from vibration power data:~a!–~d! the four
renormalized PSDM;~e! composite measure,Ci , of the four PSDM;~f!
end-of-life indicator,G ~solid!, running maximum ofG ~dashed!, and ratio,
r, of successive maxima~–•–! in G. Note that the vertical axis is the log10

of the parameter is subplots~a!–~f!, and that 3 log10(r ) is plotted in~f! for
clarity. The phase-space parameters areS5274,d52, andl51, which are
identical to those used in previous analysis~Ref. 32! to show forewarning
consistency.
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value ofG at failure onset (GONSET) and the corresponding
time (TONSET/TFAIL); and ~d! the failure-endpoint time
(TFAIL).

Table I also shows results for runs #37–38. The corre-
sponding plots34 are very similar to Fig. 7 and are not shown.
Runs #36–38 have largest non-EOL values:r NEOL56.20 and
GNEOL5376. The smallest EOL values are:r EOL56.62 and
GEOL52493. Thus, limits~for example! of r .6.4 andG
.1800 provide EOL forewarning. Moreover, we find that
the largest EOL value ofGEOL513 486, while the smallest
failure-onset value isGONSET516 284. Thus, an intermediate
value ~for example! of G.15 000 distinguishes the EOL
from failure onset forewarning. This approach gives quanti-
tative limits for transitions from nominal operation~green
light for ‘‘go’’ in a traffic signal metaphor!, to forewarning of
failure ~yellow light for ‘‘caution’’ !, and finally to failure
onset~red light for ‘‘stop’’!.

MDTB Run #39 involves a different test protocol: a 1 h
break-in period at nominal load~13!, followed by 23 load
for 2 h, after which the load alternates between 33 and 23
loads for 10 and 5 min, respectively. Figures 8 and 9 show

run #39 PSDM for the 23 and 33 overload, respectively.
The sawtooth features in each of the subplots correspond to
the transition between 23 and 33 loads; the straight-line
portion in Fig. 8 corresponds to the 23 segment in Fig. 9,
and inversely. Run #39 seeks failure forewarning in the pres-
ence of load changes. Table I shows that the above limits for
G and r also distinguish between the non-EOL~green! and
EOL ~yellow! states for the 33-portion of this test, because
the higher overload drives the failure. These limits do not
apply to the 23 test, due to the reduced damage at the lower
overload. Unsurprisingly, a different limit ofG.38 000~for
example! distinguishes between the EOL and failure onset
forewarnings, due to the change in test protocol. The green–
yellow–red approach still applies for this test.

E. Analysis of shaft-crack seeded fault

We analyzed additional PSU seeded-fault data with a
progressively increasing depth of cut at the base of a motor-
driven rotor blade. This test sequence simulates the growth
of a crack in a turbomachine, which eventually causes fail-
ure. The rotor is driven at a fixed rotational speed by a frac-

FIG. 8. Phase-space dissimilarity measures versus time for the MDTB ac-
celerated failure test~run #39 2X portion! from vibration power data:~a!–
~d! the four renormalized PSDM;~e! composite measure,Ci , of the four
PSDM; ~f! end-of-life indicator,G ~solid!, running maximum ofG ~dashed!,
and ratio,r, of successive maxima~–•–! in G. Note that the vertical axis is
the log10 of the parameter in subplots~a!–~f!, and that 3 log10(r ) is plotted
in ~f! for clarity. The phase-space parameters areS5274, d52, andl51,
which are identical to those used in previous analysis~Ref. 32! to show
self-consistency.

FIG. 9. Phase-space dissimilarity measures versus time for the MDTB ac-
celerated failure test~run #39 3X’s portion! from vibration power data:
~a!–~d! the four renormalized PSDM;~e! composite measure,Ci , of the
four PSDM; ~f! end-of-life indicator,G ~solid!, running maximum ofG
~dashed!, and ratio,r, of successive maxima~–•–! in G. Note that the
vertical axis is the log10 of the parameter in subplots~a!–~f!, and that
3 log10(r ) is plotted in ~f! for clarity. The phase-space parameters areS
5274,d52, andl51, which are identical to those used in previous analy-
sis ~Ref. 32! to show self-consistency.
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tional horsepower dc motor that was made by Bodine Elec-
tric Company, with typical electrical values of 4 V and 2 A.
Test data at each depth of cut were triaxial accelerations in
three orthogonal directions on one bearing pillow block. The
sequence test states were:~a! nominal operation with no cut,
~b! successively deeper cuts through one of eight equiangu-
larly spaced 5/8 in. diam shafts that were fixed perpendicular
to the rotation axis of the motor-driven rotor. The cut depths
range from 1/16 in. to 3/8 in. Figure 10 shows a resultant
segment of vibration power@Fig. 10~a!#, along with conven-
tional statistical measures@Figs. 10~b!–10~e!#, and tradi-
tional nonlinear measures@Figs. 10~e!–10~g!#. The magni-
tudes of minimum and maximum in vibration power@Fig.
10~b!# are constant, then rise abruptly for the deepest cut.
The number of time steps per cycle@Fig. 10~d!# rises slowly
and monotonically, also showing a large increase for the
largest cut depth. None of the other measures in Fig. 10 show
a consistent change over this test sequence. Figure 11 shows
that all four PSDM rise monotonically by 100-fold as the cut
depth increases from zero~baseline! to 3/8 in. These strong
indications of change are in sharp contrast to the weak ones
of Fig. 10.

IV. SUMMARY AND CONCLUSIONS

This work analyzes vibration power for comparison
CSM, TNM, and PSDM as indicators of condition change
due to various machine faults. Recent work by our team
showed very similar results via analysis of electrical motor
power, namely strong linear correlation of the PSDM with
fault progression, and little if any correlation with the CSM
and TNM.34 Table II summarizes recent results for forewarn-
ing of seeded faults and accelerated failures in various ma-
chines and equipment. The CSM include minimum, maxi-
mum, average, sample standard deviation, skewness,
kurtosis, average time steps per cycle, and first zero in the
autocorrelation function. The TNM include first minimum in
the mutual information function as a measure of decorrela-
tion time, correlation dimension as a measure of complexity,
and Kolmogorov entropy as a measure of information loss
rate. PSDM are thex2 statistic andL1 distance between the
time-delayed reconstructions of the PS-distribution functions
on the discretized attractor.

PSDM show more consistent and better discriminating
power for timely forewarning of failure or abnormal condi-
tions, than either CSM or TNM. The reason for the improved
performance of PSDM is rather simple. CSM and TNM com-
pare averages, while PSDM are the sum over the absolute
difference between the two PS states. In addition, the en-
hanced discrimination power facilitates use of PSDM

FIG. 10. Results for PSU turn-to-turn seeded generator fault:~a! vibration
power ~P! versus time~ms!; ~b! minimum (PN), negative of the absolute
average deviation (2a), standard deviation~s!, and maximum (PX) of P
for each test;~c! skewness~s! and kurtosis~k!; ~d! number of time steps per
cycle ~m!; ~e! first minimum in the mutual information function (M1) and
first zero in the autocorrelation (Z1); ~f! correlation dimension~D!; and~g!
Kolmogorov entropy~K!.

FIG. 11. The four PSDM versus cut depth for the shaft-crack seeded-fault
from vibration power data. This result is for the best set of phase-space
parameters:S52, d54, l523, B510, andN5100 000.
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on noisier data. The sensitivity and robustness of PSDM de-
pend both on the data quality and on the PS reconstruction
parameters. Substantial improvements in both directions are
possible from additional information about the underlying
dynamical system. Indeed,~i! data quality can be improved
by removal of~known! confounding artifacts from the signal,
and~ii ! reconstruction parameters can be chosen much closer
to their optimal values. Without this information, one must
resort to a trial and error procedure, which requires a search
over a large subset of the parameter space to obtain the best
indication of condition change.

Finally, we mention that this same approach provides
forewarning and detection of various biomedical events. One
line of recent research30,33,42–45,53–55,58shows forewarning of
epileptic seizures from scalp EEG data. More recent bio-
medical applications33,59 include forewarning of ventricular
fibrillations from electrocardiogram~ECG! data, detection of
sepsis onset from rat ECG, pig chest sounds to indicate
greater breathing difficulty for a pneumothorax condition,
and surface ECG data to forewarn of fainting. Success for
these diverse applications provides confidence that this ap-
proach is useful for detecting condition change in nonlinear
and chaotic processes for both machine and biomedical ap-
plications.
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