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We present a model-independent, data-driven approach to quantify dynamical changes in nonlinear,
possibly chaotic, processes with application to machine failure forewarning. From time-windowed
data sets, we use time-delay phase-space reconstruction to obtain a discrete form of the invariant
distribution function on the attractor. Condition change in the system’s dynamic is quantified by
dissimilarity measures of the difference between the test case and baseline distribution functions. We
analyze time-serial mechanigaibration power data from several large motor-driven systems with
accelerated failures and seeded faults. The phase-space dissimilarity measures show a higher
consistency and discriminating power than traditional statistical and nonlinear measures, which
warrants their use for timely forewarning of equipment failure. 26804 American Institute of

Physics. [DOI: 10.1063/1.1667631

One of the most important problems in time-series analy-
sis is the suitable characterization of system dynamics for
timely, accurate, and robust condition assessment. In par-
ticular, timely forewarning of failures in machinery and
industrial equipment is essential to avoid down-time,
costly repairs, and—possibly—catastrophic events. Ma-
chine processes display complex, nonstationary, and noisy
behaviors that may range from (quasi-)periodic to com-
pletely irregular (chaotic) regimes. Even when their be-
havior becomes very irregular (e.g., tool chattep, it is
reasonable to assume that—for all practical purposes—

on the attractor. If the dynamical state is unaltered, the
geometry of the attractor and the visitation frequencies of
its various points do not change. This DF represents the
baseline. Condition change is established by comparing
the baseline DF to subsequent test-case DFs via new mea-
sures of dissimilarity, namely theL ; distance andy? sta-
tistic between two DFs. A clear trend in the dissimilarity
measures over time indicates substantial departure from
the baseline dynamics, thus signaling condition change.
Depending on its severity, this departure also can be in-
terpreted as forewarning of an impending failure. We il-

lustrate this approach on triaxial acceleration data from
machinery tests for seeded faults and accelerated failures.
Our method yields robust nonlinear signatures of degra-
dation and its progression, allowing earlier and more ac-
curate detection of the machine failure in comparison to
TNM.

most of these systems have low dimensionality. As a re-
sult, analysis of their dynamical features can be done via
traditional nonlinear measures(TNM), such as Lyapunov
exponents, Kolmogorov entropy, and correlation dimen-
sion. While these measures are adequate for discriminat-
ing between clear-cut regular and chaotic dynamics, they
are not sufficiently sensitive to distinguish between
slightly different chaotic regimes, especially when the
data are noisy andor limited. Typically, machine dynam-
ics fall into this latter category, creating a massive road-
block to failure prognostication. To address this problem,
we developed a new approach that is better suited to cap-
ture changes in the underlying dynamics. We start from
robust process-indicative data, recognizing that some
data capture the full richness of the dynamics while other
data may not. The data are checked for quality, and in-
adequate data(e.g., lost data points, intervals with un-
changed signal amplitude, low sampling rate, excessive
periodic content, excessive noise, saturation at high or
low limits, and inconsistent signal amplitude across
datasets in the test sequengeare not analyzed. Accept-
able data are filtered to remove confounding artifacts
(e.g., sinusoidal variation in three-phase electrical sig-
nals), and the artifact-filtered time-serial data are then
used to recover the essential features of the dynamics via
standard time-delay phase-space reconstruction. One re-
sult of this reconstruction of the underlying dynamics is a
discrete approximation of the distribution function (DF)

I. INTRODUCTION

Condition-basedpredictive maintenance relies heavily
on failure prognostication, based on analysis of machine
data. The major roadblocks to accurate, timely, and robust
prognostication includé:(a) incomplete understanding of
fault evolution and failure physicqb) lack of predictive
methodologies for unsteady failure signatur@s;ignorance
about controlling parameters; arid) unavailability of test
facilities to emulate a real operating environment. Our
present approach is far from proposing a complete and uni-
versally applicable solution to this problem, but does offer a
partial solution. In particular, we address iterf@—(b) by
quantifying the (nonstationary condition change as a se-
guence of nonlinear statistical signatures; it@nby associ-
ating change in the controlling parameter with the equipment
response; and iterfd) by designing, running, and analyzing
tests that are similar to in-plant operations.

Machine dynamics 2’ has a long history! Metal cutting
forces during machine tool chatter have long been recog-
nized as “very complex” and “very far from sinusoidal,”
408
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implying nonlinear dynamic® Tlusty'>1®2° published ex- ture the main features of nonlinear dynamitBhase-space
tensive experimentdin)stability diagrams for turning, mill-  reconstruction of multichannel data is certainly possible, and
ing, boring, hobbing, and planing. Gt al® used nonlinear is the subject of future work.
measures to diagnose dynamics, using vibration data from Several practical caveats are also in order. We assume
rotating machineryturbogenerator and compressdukka-  adequate quality data. For example, an insufficient amount of
patnamet al® analyzed data from lathe cutting and found time-serial data does not adequately sample the attractor,
low dimensional, chaotic features. Our previous work anathereby degrading the sensitivity of the dissimilarity
lyzed the nonlinear dynamics of machine tool chaftéf, measure$?* Likewise, the data sampling raté,, must be
and used phase-spa@e9 dissimilarity to detect condition much larger than the machine dynamical ratewhich in
change in various physical processes, namely, distinguishingirn must be much larger in comparison to the inverse of the
different drilling conditions(tool weap from spindle motor time, T, to failure: > v> 1/T. We assure the validity of this
current of a machining center; distinguishifignbalanced  assumption by requiring that the first minimum in the mutual
centrifugal pump states from electrical motor power; andinformation function occur at foufor more time steps,
forewarning of a bellows coupling failure in a rotating drive where one time step corresponds te1 fs. Usually, the
train from motor current’ Our more recent work used analysis is confounded by artifacts in the data. Based on
phase-space dissimilarity to determine condition change ipriori information about the underlying dynamics, we re-
machines due to seeded faults and accelerated failui@ove such artifacts, such as sinusoidal variation in three-
progression3*** Delogu, Rustici, and co-workers found phase electrical power or resonant oscillations in vibration
hyperchao® and intermittent chad® in ball miling.  power. Also, parameters for the phase-space reconstruction
Pfeiffer’s analysid” showed that bifurcations and chaos may must be chosen carefully for robust and sensitive indication
be generated by various mechanical processes, such as stigif-condition change. This part of the methodology is still too
slip due to dynamic/static friction and surface impacts; addianalyst-intensive to be implementable on an industrial scale;
tional processes include surface deformation and materiajractica| prognostication must be less dependent on interac-
removal/weaf?*%2° tion with or guidance from the human expert. Finally, the
To date, most of the effort on condition change assessapplicability of the present methodology is limited retro-
ment and forewarning has focused on Fourier spectra, corspectiveanalysis ofarchival data for seeded faults and accel-
ventional statistical measur€SSM), and traditional nonlin-  erated failures, which are well characterized under appropri-
ear measures(TNM), such as Kolmogorov entropy, ate test conditions. A practical application of this approach
correlation dimension, and Lyapunov exponents. While thesg;j|| require prospectiveanalysis of (near-)real-time data.
descriptors discriminate adequately between clear-cut regulgthe separation between the present state of our methodology
and chaotic dynamic¥,* they are not always sufficiently and the real-world need is stil large and will require substan-
sensitive to distinguish between slightly different chaotic re+j5| additional development.
gimes, especially when data are limited and/or noisy. Indeed, The general approach is outlined next. We first acquire a

our initial analysis of machine défaused TNM, yielding  process-indicative scalar signal,which is sampled at equal
inconsistent detection and event forewarning. Those result$me intervals. » starting at an initial timet,, yielding a

indicated that detection of meaningful information in attenu-tjme-serial sequence of points,e = e(to+i7). We remove
ated, noisy, artifact-infested signals requires more sensitivgifacts from the datde.g., sinusoidal variation in three-
and discriminating measures. Our more recent work Showeﬂhase motor powgrwith a zero-phase quadratic filfafs

by direct comparison that phase-space dissimilarity measurgfat performs better than conventional filters. This filter uses
(PSDM) have consistently better sensitivity and discrimina- 5 moving window of 2+ 1 points of data, with the same

. . 31
tion power for event forewarning than T!\lﬂﬂ. number of data pointsy, on either side of a central point.
The remainder of this paper is organized as follows. Secyy fit 4 parabola in the least-squares sense to these data

tion 1l reviews our methodology, using various measures for,ints and use the central point of the fit to estimate the

time series analysis: CSM, TNM, and PSDM. Moreover, weyq,, frequency artifactf; . The residualartifact-filtered sig-
present the details of a recently develofestatistical test nal,g;=e,—f,, has essentially no low-frequency artifact ac-

for failure forewarning and onset. Section Il presents OUfyir Al subsequent analysis uses this artifact-filtered data,
results for various machine data. Section IV summarizes tha_
i

results and presents our conclusions. We convert each artifact-filtered valug,, into a sym-

bolized value,s;, namely one ofS different equiprobable
integers, 0,1,.S— 1. These symbols are formed by ordering
all N of the base case artifact-filtered time-serial data points

Machine processes display rich dynamics, includingfrom the smallest to largest value. The fildtS of these
quasiperiodicity, nonlinearity, and occasional chaos. Usingrdered values correspond to the first symbol, 0. Ordered
recent advances in nonlinear science to capture and interpréata values I/S) +1 through 2\/S correspond to the sec-
such features, our analysis of condition change relies on and symbol, 1, and so on. Equiprobable symbols have non-
few basic assumptions, namely) the underlying machine uniform partitions in the signal amplitude with the same oc-
dynamics are essentially deterministi@i) machine pro- currence frequency of; values by construction, and thus
cesses behave as a low-dimensional nonlinear, possibly chhave no information about the PS structure. In contrast, sym-
otic dynamical systendjii) a single channel of data can cap- bols with uniform partitionguniform symbol$ carry inher-

II. APPROACH
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ent dynamical structure prior to the PS reconstruction. Thusneasure of predictability. We describe these measures next,
one advantage of equiprobable symbols is that dynamicakith more detailed definitions and characterizations in the
structure arisesnly from the PS reconstruction, as describedreferences cited below.

below. Moreover, large negative and large positive values of  The mutual information functiodMIF) measures aver-

g; have little effect on equiprobable symbolization, but dra-age bits of information that can be inferred from one mea-
matically change the partitions for uniform symbols. Infor- surement about a second, as a function of the time delay
mation theoretic measures of the PS-[8kg., mutual infor-  petween the two signals. Shannon and We¥veeveloped
mation function are smooth functions of the reconstruction the MIF, which was later applied to time serf@ne set of
parameters for equiprobable symbols, but are noisy functionfyeasurements isq={0;.095,....0x}, Wwith associated

of these same parameters for uniform symbols. For thesgccurrence probabilities2(q;), P(qs,),...,P(qy). A second
reasons, equiprobable symbols provide better discriminatioBet of measurements is={ry,r,,...rn}, with a time delay

of condition change than uniform symbols. relative to Q, and with occurrence probabilities

A. Conventional statistical measures P(r1),P(rz),....P(ry). P(q;,r;) is the joint probability that
both states occur simultaneously. The first minimum in the

CSM have long been used for general characteri@tior}w”: M, gives an average decorrelation time. Then, the
The most common statistical measures are the mean: MIF, is d;afined asl (q.r) =1 (r.q) = H(q) + H(r)— H(r q)’

=2,0;/N, where the sum over, %;, spans allN of the . . N Pl .
points in the analysis window, and the sample standard d where H s _entropy: H(q)=—2iP(q;)logP(q)] and

viation, &, which is o?=3,(g—g)2(N—1). Higher Hian=-3P@a rogPGr). e
moment&® about the mean include skewness=3. (g; The maximum-likelihood correlatlorlldlmens is
3/n .3 o TS 4 D=—M{Z;i In[(8; /8= S/)(1= &)1}, where M is
0)°/No®, and kurtosisk=3,(gi—0g)*/Nc"—3. A large | I )
positive (negative value of skewness corresponds to athef number Of. randomly—s:?\mpled pairs of phas_e—spa_lce
longer, fatter tail in the distribution about the mean to the_po'nts,' The maximum-norm distance between PS'PO'm pairs,
right (left). Kurtosis measures the amount of flattenirg ( ' andj, is 5”-=max(0£k$m—_1)|gi+k—gj+k|, Wherem_ls the
<0) or excess peakedneds0) about the mean. Another average number o_f data p(_)lnts per cycle, as deflped above
measure is the average number of time steps per wave cyctider CSM. The distancé, is the scale length that is asso-
(frequently used in engineering analysis of sampled )datac'at?d with noise. Distances are -normahzed with respect to a
m=N/[(n.—1)/2]~2N/n., for n;>1. Here,n, is the av- nominal scale lengthg,, which is chosen to balance be-
erage number of mean crossings: the two successive me#ffeen sensitivity to local dynamigsypically at5p<5a) and
crossings delimit one-half of a wave period. The position of2voidance of excessive noiggpically at 5,=a). Here, the
the first zero in the autocorrelation function, as defined bysymbola denotes the absolute average deviation as a robust
AG)=%i(gi—09)(gi+j—09)/(N—j)o?, is also a useful quan- indicator of variability;” a=X|g;—g[/N.
tity. Nevertheless, while CSM are useful in the analysis of ~ The Kolmogorov entropyK-entropy, K, is the rate of
linear processes, they provide inconsistent discrimination fonformation loss per unit timébits per second and is the
detection of condition change in nonlinear systems. We insum of the positive Lyapunov exponents. Positive, filits

clude them here for completeness and comparison. generally viewed as a clear indication that the process mani-
fests chaotic dynamics. Very large entropy indicates a sto-
B. Traditional nonlinear measures chastic(totally unpredictable phenomenonK is estimated

The advent and rapid development of nonlinear and chaf-rom the average number of time stef, for two PS

otic dynamics over the last few decades has produced nePNts: initially within < &, to diverge t05> . sz use
and powerful measures for characterization via Ppgne maximum-likelihood form of Schouteretal,™ K
reconstructioi®*%4"which uses time-delay vectors that are — _ {s109(1—1/b), with b=X;b;/M for M point pairs. The
formed from the artifactfiltered, symbolized datg(i)  dat@-sampling rate if. _
=[S/,Si1x++--Si+(@_1]- The choice of lagh, and embed- TNM capture nonlinear feature.s. of the underlylng pro-
ding dimensiond, determines how well the PS reconstruc- €SS but do not offer a very sensitive tool for detection of
tion unfolds the dynamics. Too high an embedding dimendynamical change. The main reason is that TNM, like CSM,
sion could result in overfitting of real data with finite length are expressed as a suor integra) over (a region of the PS,
and noise. Moreover, different observables of a system corwhich averages all dynamical details into one number. Con-
tain unequal amounts of dynamical informatirimplying ~ sequently, twdvery) different dynamical regimes may lead
that PS reconstruction could be easier from one variable, bi@ very close, or even equal measures. Moreover, the usual
more difficult or impossible from another. Our analysis seekglefinitions ofK-entropy and correlation dimension are in the
to balance these caveats for finite-length noisy data. limit of zero scale length. However, all real data have noise,
We use the phase, traditional nonlinear meas(ifd/1),  and even noiseless model data are limited by the finite pre-
as distinct from the PS measures, as defined in the next subision computations. Thus, we use a finite length scale that is
section. We choose three of the most-frequently-used TNMsomewhat larger than the noisé, & 2a), at which to report
as potential indicators of dissimilarity, namel§) the first  the values oK andD. Consequently, our values &f andD
minimum in the mutual information function as a measure ofdo not capture dynamical complexity at length scales smaller
decorrelation time(ii) the correlation dimension as a mea- than §, and have smaller values than expected for the zero-
sure of complexity, andiii) the Kolmogorov entropy as a scale-length limit §,—0).
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C. Phase-space dissimilarity measures terparts. Indeed, we can prd¥ehat these measures satisfy

. . g . 2 2 2
To overcome some of the limitations of CSM and TNM the following inequaliiesy“<L, xg=<Lc, L<L., andx

as discriminators of condition change, we introduced phase—gXC' o .
space dissimilarity measuré8SDM),°-3*which we review We call the quantities in Eq$1)—(4), phase space dis-

briefly for the reader’s convenience. After reconstructing theSlmllarlty megsureg(PSDl\/D. Their Qef|n|t|ons Sh.OW that
dynamics(as discussed aboyewe use appropriate symbol- PSDM can d.lscr.lmlr]ate betwegn dlfferent chaotic regimes.
ization (also as described abovie partition the phase-space Such d|§cr|m|naF|0n'|s'n0t' possible W|th TNM. The reason is
(PS into S hypercubes or bins. By counting the number offather simple: dlscrlmlnat_lon _bY TNM IS based on a differ-
PS points that occur in each bin, we obtain the distributiort '€ OT averages, while d|scr|m|na_t|on via PSDM is based on
function (DF) as a discretized density on the attractor. wedveraging the absolute value of_dlffgrences.

denote the population of thjéh DF bin,R;, for the base case The disparate range and variability of these measures are

(nominal statg and S; for a test casgoff-normal statg, difficult to interpret, especially for noisy data. We obtain a

respectively. Comparison of the test case to the base Caggnsstent means of comparison via renormalized dissimilar-

42,43 \y b - — |\
involves measuring the difference betwegnwith S; by the Iy measures(RDM), which are defln(_ad_b)U(V) =1V
¥? statistic and_, distance: —V|/o, as the number of standard deviations that the test

case deviates from the base case m&adenotes a dissimi-
larity measure from the se¥/={L,L.,x?, andyZ}. We ob-
tain the mean value/, of the dissimilarity measure by com-
parison among th&(B—1)/2 unique combinations of thH&
L=2 |R,——SJ-|. ) b_as_e case cutsets, with a corresponding sample standarc_:i de-

i viation o. We subsequently compare each nonoverlapping
test case cutset to each of tBBdase case cutsets, and obtain
the corresponding average dissimilarity val\e, of theith
cutset for each dissimilarity measure. A statistically signifi-
‘cant trend in the RDM indicates equipment degradation for
ailure forewarning.

x2=; (Ri—S)(R+S)), (1)

The summations in Eq$1)—(2) run over all of the populated

PS cells. The ? statistic is one of the most powerful, robust,
and widely used tests for dissimilarity between two DFs
This x? is not an unbiased statistic for accepting or rejectin

a null statistical hypothesf§,but rather is a measure of dis- The best choice of the parameter s@t,w,S,d,B,\},

similarity between the two DFs. THe, distance is the natu- b

" o . : . depends not only on the system, but also on the specific data
ral metric for DFs by its direct relation to the total invariant . . “ »

under consideration. We choose a “reasonable” value for the
measure on the attractor. These measures account far
. O number, B, of base case cutsets=B=<10, as a balance
changes in the geometry and visitation frequency of the at: o “
: . : . between a reasonably short quasistationary segment of “nor-

tractor. Consistent calculation obviously requires the samé

number of points in both the base case and test case DF@aI.Qynamms anq a sufficiently long |nterna] for. statistical
: ) ) : o .~ significance. We find that the longest analysis windowNof
identically sampled; otherwise the distribution functions

must be properly rescaled points is best, limited by the total length of the data. Our

analysis proceeds as follow&) choose the parameter set,

The accuracy and sensitivity of the_PS reconstructio w,S,d,A}; (b) compute the renormalized PS dissimilarities
can be enhanced by connecting successive PS points as pge-

scribed by the underlying dynamicg(i)—y(i+1). Thus, or the specific machine data; arfid) systematically search

we obtain a discrete representation of the process’fitas over th_e parameterfw,S,d,\}, to find the best forewarning
. . indication.
a 2d-dimensional, connected-phase-spa@@PS vector,

. —33 a.
Y(i)=[y(i).y(i +1)], that is formed by adjoining two suc- Our previous _vyorﬁo found that RDM are sensitive

. . . measures of condition change, but that further improvements
cessive vectors from thé-dimensional reconstructed PS. As

before. R and S denote the CPS DFs for the base case anc?re needed to give an epr|C|t. |.nd|cat|on of failure. Thus, we
Seek a more robust and specific end-of-{{&OL) forewarn-

test case, respectively. We then define the measures of dis- . o
similarity between these two CPS DFs via the-distance ing. Extensive application of the PSDM approgtH shows

2 - 43,53-55 that all four of the PSDM display similar trends, as illus-
and x* statistic, as befofé trated by the analysis of the machine data below. This obser-
) 5 vation suggests the definition of a composite meastireas
Xc:% (Rik=Sj) 7 (Rjx+ Sj), (3)  the sum of the four renormalized PSDM for thé dataset:

Ci=U(Xx)+U(H+U(L)+U(Ly). 5

LS Rl “ =UOA+UO+UL)+U(Lo) (5)
: This composite measure is expected to be more robust than

The subscript denotes CPS measures; the subscripdsid  any one of the PSDM, while accurately indicating condition

k, denote the initialy(i), and final,y(i+1), PS states, re- change. The end-of-life indication from this composite mea-

spectively. The valua.=1 results ind—1 components of sure is then quantified as follows. We use contiguous, non-

y(i+1) being redundant with those gfi); we allow this  overlapping windows o€; to obtain a least-squares straight-

redundancy to accommodate other data such as discreliae fit:

points from two-dimensional maps. CPS measures have

higher discriminating power than their nonconnected coun- y;=ai+b. (6)
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FIG. 1. Results for EPRI air-gap offset seeded fa(a}:vibrational power
(P) versus time(ms); (b) minimum (Py), negative of the absolute average
deviation (—a), standard deviatiofio), and maximum Py) of P for each
test; (c) skewnesgs) and kurtosis(k); (d) number of time steps per cycle
(m); (e) first minimum in the mutual information functionM;) and first
zero in the autocorrelationZ(); (f) correlation dimensionD); and (g)
Kolmogorov entropy(K).

FIG. 2. Plots of the four nonlinear dissimilarity measures for the airgap-
offset seeded-fault from vibration power with the following phase-space
parametersd=3, S=3, A=11. Dataset #1 is for the nomin&ho fauly
state. Datasets #2-3 are for two different airgap-offset faults.

Ill. ANALYSIS OF MACHINE DATA

Without a model, the “correct” choice of process-
indicative data can be justified ondy/ posteriori As a prac-
Bcal matter, this choice is limited to measurable process vari-
ables. Moreover, the analyst’s choice must recognize that not
all observables capture the same amount of information.
Typical machine data are triaxial acceleratianand three-

— 5 phase electrical current;, and voltage,V;. From these

o —Z (yi—C)(n—1). () data, we calculate the instantaneous mecharfichtation)

or electrical powerPe«a-fadt or 3,;1,V;, respectively. The
Finally, G measures the variability of next values ofC;  yse of vibration or electrical power is certainly not unique.

The window length o= 10 values ofC; (andy; below) is
chosen consistent with the number of cutsets in each sna
shot B=10). Other values oB give inferior indication of
condition change. Next, the varian@e’, measures the vari-
ability of the C; values about this straight-line fit:

about an extrapolation of this straight-line: Indeed, one component of accelerati@n current or volt-
B age may provide an adequate process-indicative signal to
G=2 (yi—C)2a2. (8)  extract condition change. The use of power has the advan-
I

tage that only one channel of data is analyzed, instead of
Other fits (quadratic, cubic, and quarli@are inappropriate, several channels, to find the best signal for change discrimi-
because they extrapolate poorly outside the fitting windownation. This paper presents details of the forewarning analy-
The index|i, in Egs.(6)—(8) runs over théB values ofC; and  sis viavibration power Similar analyses of three-phase elec-
yi. G has the form of a chi-squared statistic, but we do notrical power, and individual channels of current, voltage,
use that notation to avoid confusion with the tw6 PSDM.  acceleration, velocity, and torque are described in Refs. 32
A statistical test foiG would involve (for example the null  and 34.
hypothesis that deviations from the straight-line fit are nor-  For this analysis, the datasets for each test in the se-
mally distributed. Analysis of accelerated test data uses Eqsjuence were concatenated into a single long dataset. We
(5)—(8) to extract both forewarning and an indication of fail- verify data quality by checking for: the proper number of
ure onset. We present the results of this analysis next. data points, any intervals with unchanged signal amplitude,
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< 0.09f 1
0.08 4
1 15 2 25 3 35 4 45 5 o . . . . . . .
TEST NUMBER 0 05 1 15 25 3 35 4

SEVERITY
FIG. 3. Results for EPRI broken-rotor seeded fa(d}:vibration power(P)
versus time(ms); (b) minimum (Py), negative of the absolute average
deviation (—a), standard deviatiofio), and maximum Py) of P for each
test; (c) skewnesgs) and kurtosis(k); (d) number of time steps per cycle
(m); (e) first minimum in the mutual information functionM;) and first
zero in the autocorrelationZ(); (f) correlation dimensionD); and (g)
Kolmogorov entropy(K).

FIG. 4. Plots of the four nonlinear dissimilarity measures for the broken-
rotor seeded-fault vibration power data versus fault seveéntymber of
broken rotor bars Dataset #1 is for the nominéaho faulp state. Dataset #2

is for the 50% cut in one rotor bar. Dataset #3 is for the 100% cut in one
rotor bar. Dataset #4 is for two cut rotor bars. Dataset #5 is for four cut rotor
bars. The PS reconstruction parameters a@re3, S=130, and\ =21.

adequate sampling rate, excessive periodic content, exce80t air-gap offset seeded faults were then imposed via prein-
sive noise, saturation at high or low limits as an indicator ofstalled jackscrews. The second dataset imposed a static in-
improper data scaling, and consistent signal amplitude acrog¥ard air-gap offset of 8 mils from the nominal value of 30
datasets in the test sequence. The present analysis appli®§s. The third dataset retained the first fault, and added a
only to data that pass these quality tests. static outboard air-gap offset by 20% in the opposite direc-

The Electric Power Research InstityfePR|) sponsored tion from the inboard shift, resulting in the rotor being
work on predictive maintenance for large motors, simulatingskewed relative to the stator. Figure¢all shows a 20 ms
common failures via seeded fautfsPresent analyses use segment of vibration power data with complex, nonlinear
triaxial (vibration) acceleration data from inboaftB) motor ~ features. The corresponding CSMrigs. 1b)-1(e)] and
location, because all data from the outboard motor locatiod NM [Figs. 1(€)—1(g)] do not provide a clear indication of
failed the quality check. Data were recorded in 1.5-s snapthe increasing severity of the seeded fault. In sharp contrast,
shots at 40 kHz(60000 points per datagetOur analysis Fig. 2 shows that all four PSDM rise linearly with increasing
averages the measures over five subsBts §) of 12000 fault severity, yielding good change discrimination.
points.

B. EPRI rotor-bar seeded fault

A. EPRI air-gap seeded fault A second EPR[REef. 56 test involved operator-imposed

One EPRI tesP involved operator-imposed air-gap off- partial or total cuts in the rotor bars. The test bed was the
sets in the rotor-stator alignment. The test bed was a thresame Allis Chalmers motor. The test began with the motor
phase, 800-HP sleeve-bearing, form-wound Allis Chalmersunning in its nominal statéfirst dataset followed by pro-
induction motor, rated at 4160 V and 100 A at 60 Hz with 10gressively more severe broken rotor bars. The second dataset
poles, 94 copper rotor bars, 40 stator slots, running at a nofnvolved one rotor bar cross section cut 50% in half at the
mal speed of 710 rpm. The first dataset of test sequenc&l:00 position. The third dataset was for the same rotor bar
involves the motor running in its nominal state. Two differ- now cut through 100%. The fourth dataset was for a second
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TEST NUMBER

22 24 286 28 3 A

FIG. 5. Results for EPRI turn-to-turn seeded fa(d: vibration power(P)
versus time(ms); (b) minimum (Py), negative of the absolute average FIG. 6. Plots of the four nonlinear dissimilarity measures from the turn-to-
deviation (~a), standard deviatiolis), and maximum Py) of P for each turn short seeded-fault vibration power. Dataset #1 is for the nonfimal
test; (c) skewnesgs) and kurtosis(k); (d) number of time steps per cycle fault) state. Dataset #2 is for the 2.7-ohm short. Dataset #3 is for the 1.35-
(m); () first minimum in the mutual information functionM;) and first ~ ohm short. The PS reconstruction parameters @2, S=6, A =57.
zero in the autocorrelationZ(); (f) correlation dimension(D); and (g)
Kolmogorov entropy(K).
turn-to-turn(2.70-ohm short by installing a large screw be-
tween two turns. A third dataset involved a more severe turn-
rotor bar cut 100% at the 5:00 position, exactly 180° from, into-turn (1.35-ohm short by installing a smaller screw be-
addition to the first rotor failure. The fifth dataset was for two tween two turns. The analysis sequence goes from largest
additional rotor bars cut adjacent to the original 11:00 barturn-to-turn resistancénfinite resistance, corresponding to
with one bar cut on each side of the original, yielding fourno shorj, to smaller(2.7 ohms, to smallest(1.35 ohms,
bars completely open. The complete test sequence then cagorresponding to increasing severity in the fault. Figui@ 5
tured an exponentially growing fault, from nominal opera-shows a 20 ms segment of vibration power data with com-
tion, to 3, to 1, to 2, to 4 broken rotors bars. FiguréaB plex, nonlinear features. The corresponding C$Mgs.
shows a 20 ms segment of vibration power data with coms(h)—5(e)] and TNM [Figs. §e)—5(g)] show some consis-
plex, nonlinear features. The corresponding C$Mgs.  tency with the increasing severity of the seeded fault. The
3(b)-3(e)] and TNM[Figs. 3e)-3(g)] do not provide a clear minimum (Py) rises and maximumRy) falls [Fig. 5b)]
indication of the exponentially-growing severity of the monotonically over the test sequence. Kurtosis decreases and
seeded fault. Figure 4 shows that all four PSDM rise linearlyskewness increases monotonicdliig. 5(c)] over the test
with the increasing fault severity, thus yielding good changesequence. Linear increases occur in the average number of
discrimination. time steps per cycl¢Fig. 5d)] over a very narrow range
(7.2-7.8, and the first zero in the autocorrelation function
[Fig. Xe)]. Figure 6 shows that all four PSDM rise linearly

with the increasing fault severity, thus yielding good change
A third EPRI test® involved operator-imposed turn-to- discrimination.

turn shorts in a motor. The test bed was a three-phase, 500-
HP, sleeve-bearing, form-wound General Electric inductionD
motor, rated for 4000 V at 60 Hz, with 84 rectangular copper"
rotor bars, 6 poles, and 108 stator slots, running at a nominal The Pennsylvania State UniversitiPSU operates the
speed of 1185 rpm. The first dataset was from the motorApplied Research Laborato?fy,including the Mechanical
running in its nominal state. A second dataset involved aiagnostics Test BedMDTB). A 30-HP, 1750-RPM, alter-

C. Analysis of turn-to-turn-short seeded fault data

Analysis of gear-failure acceleration data
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TABLE I. Summary of MDTB test results.

Over- At TeoL TonseT TeaiL
Run load min I'NEOL GneoL leoL GeoL TraiL Gonser Tra h
36 2X 15 2.22 376 6.62 2493 0.985 244655 0.998 162.50
37 3x 1 1.79 333 8.07 2690 0.956 16284 0.996 8.55
38 3X 1 6.20 374 11.71 13486 0.938 48379 0.990 4.02
39 2X 1 2.32 853 3.89 5231 0.980 5231 0.980 8.60
39 3% 1 2.88 1151 29.03 33415 0.972 44552 0.994 8.60

nating curren{ac), electric motor drives a gearbox, which is r=(G, . )«/(Gmadk_1, Of the current maximum inG,
loaded by a 75-HP, 1750-RPM &absorption motor. A digi- (Gmak, to the previous maximum i, (G k1. G rises
tal vector drive unit controls the current to the absorptionto 2493 at 160 h, with a corresponding ratie; 6.62, while
motor for torque variation up to 225 ft-lbs. The MDTB can the largest non-EOL ratio is=2.22 at 28.5 h. We find that
test gear ratios from 1.2:1 to 6:1 in the 5-20 HP range at 2—¢he forewarning values d; across the various MDTB tests
times the rated torque of single and double reduction indusare not consistent, but that the valuesGyf,, andr consis-
trial gearboxes. The motors and gearbox are mounted angntly do provide both forewarning of the failure and indica-
aligned on a bedplate, which is mounted on isolation feet tqjon of the failure onset, as shown in Table(#® the largest
prevent vibration transmission to the floor. The shafts argon-EOL value off (rygo) and the corresponding value of
connected with both flexible and rigid couplings. Torque lim-G (Gygo,); (b) values ofr (rgo) andG (Ggo,) that indi-
iting clutches on both sides of the gearbox prevent transmiscate the EOL, and the matching tim&go, /Tea); (€) the
sion of excessive torque during a gear jam or bearing seizure.

Torque cells on both sides of the gearbox directly monitor
the loads. The protocol for this accelerated failure test in- _
volves a break-in period at the nomin@lx) load (530 ft-
Ibs) for 1 h, followed by twice(2X) or three timeg3X) the
normal load, as shown in Table I, which also includes the
time to failure (Tyy;). The EOL failures typically include
pinion damage, broken teeth, and a sheared shaft. Ten-secolz,
snapshots of tri-axial accelerometer data were sampled at 53; .
kHz; see Table | for the intervél\7) between each snapshot. £
We convert the accelerometer data during the overload pe
riod into vibration power for this analysis. As before, the
CSM and TNM show little if any failure forewarniny,so

we do not show them here.

Figure 7 shows that all four PSDM rise systematically
[Figs. 1a)—7(d)] to provide failure forewarning. Indeed, the
abrupt increase in all four PSDM at 160 h clearly forewarns
of the imminent failure. We obtain this forewarning by quan- <
tifying significant deviations from the general trend via ap-
plication of Egs.(5)—(8). Chi-squared statistical tables give
the corresponding value d6=<28.5 for n=10 degrees of
freedom with a probability of one out of the 650 snapshots or ~
(1/650~1.5x 10" ). However, we observe many instances
of G>28.5[solid curve in Fig. T)], which arise from dy-
namical correlations in the accelerometer data, thus violating
the requirement for independent, identically distributed  ° ' ' ' ' ' ' ' ]
samples. g 4

Instead, we us& as arelative EOL measure. Although £ 2 T W v o et [N T b
G varies erratically, we observe a systematic trend in the L .
running maximum of3, G .y, s shown by the dashed curve R . N

in Fig. 7(f), neglecting(for example the first sixG-values to o )
FIG. 7. Phase-space dissimilarity measures versus time for the MDTB ac-

avoid startup transients. This running maximum Stead”y m'celerated failure tedrun #36 from vibration power datata)—(d) the four

creases in modest increments to 376 over the first 159.75 @normalized PSDM{e) composite measure; , of the four PSDM;(f)
of the test, while intermediate values®@ffall well below the  end-of-life indicator,G (solid), running maximum of (dasheg} and ratio,
running maximum. Subsequently, a large increase occurs if of successive maximé--—) in G. Note that the vertical axis is the lgg

_ : : . . Of the parameter is subplota)—(f), and that 3 logy(r) is plotted in(f) for
Ci at 160 h, which produces a correspondingly large rise Ir{(zlarity. The phase-space parameters@#€274,d=2, and\ =1, which are

G anc_l _therefore ian]ax- The resqlting jumps G yax aré  identical to those used in previous analy§kef. 32 to show forewarning
quantified by the chain curve--—) in Fig. 7(f), as the ratio, consistency.

log, [UG7)

tog [U(L)]

=
=

=3

o

log 4 O(C

1 1 1 N
100 120 140 160
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FIG. 8. Phase-space dissimilarity measures versus time for the MDTB ad=IG. 9. Phase-space dissimilarity measures versus time for the MDTB ac-
celerated failure tesrun #39 2X portion from vibration power datate)-  celerated failure tesfrun #39 3X's portiop from vibration power data:

(d) the four renormalized PSDME) composite measurd;;, of the four ~ (@—(d) the four renormalized PSDMj) composite measures; , of the
PSDM:; (f) end-of-life indicatorG (solid), running maximum of5 (dashed} four PSDM; (f) end-of-life indicator,G (solid), running maximum ofG

and ratio,r, of successive maximé--—) in G. Note that the vertical axis is  (dasheg, and ratio,r, of successive maximg---) in G. Note that the

the log,, of the parameter in subplota)—(f), and that 3 logy(r) is plotted ~ Vertical axis is the log of the parameter in subplot&)—(f), and that

in (f) for clarity. The phase-space parameters $#e274,d=2, and\=1, 3 logy(r) is plotted in(f) for clarity. The phase-space parameters &re
which are identical to those used in previous analyRsf. 32 to show =274,d=2, and\ =1, which are identical to those used in previous analy-
self-consistency. sis (Ref. 32 to show self-consistency.

_ _run #39 PSDM for the & and 3x overload, respectively.
value of G at failure onset Gonsey) and the corresponding  The sawtooth features in each of the subplots correspond to
time (Tonser/Tra); @nd (d) the failure-endpoint time he transition between>2 and 3< loads; the straight-line
(Teai) - portion in Fig. 8 corresponds to thex2segment in Fig. 9,

Table | also shows results for runs #37-38. The correzng inversely. Run #39 seeks failure forewarning in the pres-
sponding plot¥' are very similar to Fig. 7 and are not shown. ence of load changes. Table | shows that the above limits for
Runs #36-38 have largest non-EOL valuggio =6.20 and G andr also distinguish between the non-EQgreen and
GneoL=376. The smallest EOL values amo =6.62 and  £Q (yellow) states for the S-portion of this test, because
GeoL=2493. Thus, limits(for examplg of r>6.4 andG  the higher overload drives the failure. These limits do not
>1800 provide EOL forewarning. Moreoyer, we find that apply to the X test, due to the reduced damage at the lower
the largest EOL value o6go =13 486, while the smallest  oyeripad. Unsurprisingly, a different limit &> 38 000(for
failure-onset value iSonser= 16 284. Thus, an intermediate example distinguishes between the EOL and failure onset

value (for examplg of G>15000 distinguishes the EOL forewarnings, due to the change in test protocol. The green—
from failure onset forewarning. This approach gives qua”t"yellow—red approach still applies for this test.
tative limits for transitions from nominal operatidigreen

light for “go” in a traffic signal metapho, to forewarning of
failure (yellow light for “caution”), and finally to failure
onset(red light for “stop”). We analyzed additional PSU seeded-fault data with a

MDTB Run #39 involves a different test protocal 1 h  progressively increasing depth of cut at the base of a motor-
break-in period at nominal load X), followed by 2< load  driven rotor blade. This test sequence simulates the growth
for 2 h, after which the load alternates between &nd 2x of a crack in a turbomachine, which eventually causes fail-
loads for 10 and 5 min, respectively. Figures 8 and 9 showre. The rotor is driven at a fixed rotational speed by a frac-

E. Analysis of shaft-crack seeded fault

Downloaded 10 Jun 2004 to 160.91.64.67. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 14, No. 2, 2004 Machine failure forewarning 417

(a)
N:”;S 2F b
2
=
@ 1F J
e g
o [ 1 of g
© O = = e - e — e e e = T D T 1 1 1 1 1 1 1
T 0 0.05 0.1 0.15 02 0.25 03 0.35
n.z 1 1 1 1 1 1 1 1 1
1 15 2 25 3 35 4 45 5 5.5 6 3 T T T T T T T
T 0.05F, I y— —— T ____ __T-—-4 ®©
|
g of g ”TS ol J
2 0051 B 5
_ >
T o . . . . . . . . . g r 1
1 1.5 2 25 3 35 4 45 5 55 6 3
25 [0 T T T T T T T T T ok i
e 2T 1 0 0.05 0.1 0.15 0.2 025 0.3 035
151 -
L T T T 1 1 1 2 T T T T T T T L
1 15 2 25 3 35 4 45 5 5.5 6 (©
(e) T T T T T T T T T —_ 15 B T
| S0 74 F
~ a0k PR 5 4} i
N 20l e ] 2
—_ - )
J20r- .z b g osr B
b= L) i i T Tl == e HT I .
1 15 2 25 3 35 4 45 5 55 6 of 4
34— T T T T T T T . L L L L . .
32| - 0 0.05 0.1 0.15 02 0.25 03 0.35
3l i
[=]
28f E
26 4 25 T T T T T T T
24 L L L L L L L L L 2 3
1 15 2 25 3 35 4 45 5 55 6 = (@
0.14 T T T —r T T T - 151 1
012 g 2
04| E 2 1r 7
¥ 008} 1 g
0.061 E 2 osf ]
0.04 . . . . . . . . . J of E
1 1.5 2 25 3 35 4 45 5 5.5 6 L . . . . . .
TEST NUMBER 0 0.05 0.1 0.15 02 0.25 03 0.35

CUT DEPTH (IlNCHES)

FIG. 10. Results for PSU turn-to-turn seeded generator fealtvibration

power (P) versus time(ms); (b) minimum (P,), negative of the absolute FIG. 1]_.. Tr_]e four PSDM versus cut depth for the shaft-crack seeded-fault
average deviation{a), standard deviatiofio), and maximum Py) of P from vibration power data. This result is for the best set of phase-space
for each test(c) skewnesgs) and kurtosi<k); (d) number of time steps per ParametersS=2, d=4, \ =23, B=10, andN=100 000.

cycle (m); (e) first minimum in the mutual information functiorM;) and

first zero in the autocorrelatiorz(); (f) correlation dimensioriD); and(g)

Kolmogorov entropy(K). IV. SUMMARY AND CONCLUSIONS

This work analyzes vibration power for comparison

CSM, TNM, and PSDM as indicators of condition change

due to various machine faults. Recent work by our team
tional horsepower dc motor that was made by Bodine Elecshowed very similar results via analysis of electrical motor
tric Company, with typical electrical values of 4 V and 2 A. power, namely strong linear correlation of the PSDM with
Test data at each depth of cut were triaxial accelerations ifault progression, and little if any correlation with the CSM
three orthogonal directions on one bearing pillow block. Theand TNM3* Table Il summarizes recent results for forewarn-
sequence test states wef@: nominal operation with no cut, ing of seeded faults and accelerated failures in various ma-
(b) successively deeper cuts through one of eight equiangwhines and equipment. The CSM include minimum, maxi-
larly spaced 5/8 in. diam shafts that were fixed perpendiculamum, average, sample standard deviation, skewness,
to the rotation axis of the motor-driven rotor. The cut depthskurtosis, average time steps per cycle, and first zero in the
range from 1/16 in. to 3/8 in. Figure 10 shows a resultantautocorrelation function. The TNM include first minimum in
segment of vibration powdFig. 10@)], along with conven- the mutual information function as a measure of decorrela-
tional statistical measuregFigs. 1@b)-10e)], and tradi- tion time, correlation dimension as a measure of complexity,
tional nonlinear measurd$-igs. 1@e)—10(g)]. The magni- and Kolmogorov entropy as a measure of information loss
tudes of minimum and maximum in vibration powigfig.  rate. PSDM are thg? statistic and_, distance between the
10(b)] are constant, then rise abruptly for the deepest cuttime-delayed reconstructions of the PS-distribution functions
The number of time steps per cydlgig. 10d)] rises slowly  on the discretized attractor.
and monotonically, also showing a large increase for the PSDM show more consistent and better discriminating
largest cut depth. None of the other measures in Fig. 10 shopower for timely forewarning of failure or abnormal condi-
a consistent change over this test sequence. Figure 11 shotigns, than either CSM or TNM. The reason for the improved
that all four PSDM rise monotonically by 100-fold as the cut performance of PSDM is rather simple. CSM and TNM com-
depth increases from zefbaseling to 3/8 in. These strong pare averages, while PSDM are the sum over the absolute
indications of change are in sharp contrast to the weak onedifference between the two PS states. In addition, the en-
of Fig. 10. hanced discrimination power facilitates use of PSDM
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TABLE II. Summary of recent machine failure forewarning results.

L. M. Hively and V. A. Protopopescu

Data provider Equipment and type of failure Diagnostic data Reference

(1) EPRI(S) 800-HP electric motor: air-gap offset motor power 32
(2) EPRI(S) 800-HP electric motor: broken rotor motor power 32
(3) EPRI(S) 500-HP electric motor: turn-to-turn short motor power 32
(4) Otero/Spain(S) %—HP electric motor: imbalance acceleration 32
(5) PSU/ARL(A) 30-HP motor: overloaded gearbox load torque 32
(6) PSU/ARL(A) 30-HP motor: overloaded gearbox vibration power 32
(7) PSU/ARL (A) 30-HP motor: overloaded gearbox vibration power 32
(8) PSU/ARL(S) crack in rotating blade motor power 32

(9) PSU/ARL (A) motor-driven bearing vibration power 32

(10) EPRI(S)
(11) EPRI(S)
(12) EPRI(S)

800-HP electric motor: air-gap offset
800-HP electric motor: broken rotor
500-HP electric motor: turn-to-turn short

vibration power
vibration power
vibration power

present work
present work
present work

(13) PSU/ARL (A)
(14) PSU/ARL (A)
(15) PSU/ARL (A)
(16) PSU/ARL (A)
(17) PSU/ARL(S)

30-HP motor: overloaded gearbox
30-HP motor: overloaded gearbox
30-HP motor: overloaded gearbox
30-HP motor: overloaded gearbox
crack in rotating blade

vibration power
vibration power
vibration power
vibration power
vibration power

present work
present work
present work
present work
present work

on noisier data. The sensitivity and robustness of PSDM de+NIST/ATP Workshop on Condition-Based Maintenance,
pend both on the data quality and on the PS reconstructionwww.nist.goviwww/cbm/cbmwp1.htm.
parameters. Substantial improvements in both directions are(Bl'ggéBerger' M. Rokni, and I. Minis, Int. J. Eng. SG0, 1433-1440
possml_e from additional information _about the _underlylng 3G. T. S. Bukkapatnam, A. Lakhtakia, and S. R. T. Kumara, Phys. Rev. E
dynamical system. Indeed, dafca qua_llty can be |mpr_oved 52, 2375-2387(1995.
by removal of(known) confounding artifacts from the signal, “S. T. ChiriacescuStability in the Dynamics of Metal Cuttin@tudies in
and(ii) reconstruction parameters can be chosen much closerApplied MeC"haniZS ZZEIBEVif]f, New York, 1990 41996
; ; ; P ; G. Giacomelli and APoliti, Phys. Rev. Lett76, 2686—-26891996.

to their optlmalll va(;ues. Wlthouzj this m;‘](.)anatlon., one must r;" Grabec, Phys. Lett, A17, 384.386(1986,
resort to a trial and error procedure, whic requwes'a S€arch|  Grapec, inProceedings of the 8th International Acoustic Emissions
over a large subset of the parameter space to obtain the besgymposiuntTokyo, Japan, 1986 pp. 87-93.
indication of condition change. 8). Grabec, Int. J. Mach. Tools Manu28, 19-32(1988.

Finally, we mention that this same approach providesgC- Hualing and D. Depei, “A new theoretical model of nonlinear chatter in
forewarning and detection of various biomedical events. One cutting process,” in Proceedings of the 11th International Conference on

. ; Production ResearciCPR), 1991, pp. 932-936.
33,42-45,53-55,5
line of recent research 8hows forewarning of 1 jemielniak and A. Widota, Int. J. Mach. Tools Man@g, 249256

epileptic seizures from scalp EEG data. More recent bio- (1989.
medical applications>° include forewarning of ventricular *R. 1. King, “Historical background,” inHandbook of High-Speed Machin-
fibrillations from electrocardiograffECG) data, detection of ng;eghhno'oiye‘j'te" by R. I. King(Chapman and Hall, New York,

. . . , ap. 1.
sepsis onset f.rom rat ECG, pig chest sounds to mqlcatQF. Koenigsberger and J. Tlustylachine Tool Structure@Pergamon, New
greater breathing difficulty for a pneumothorax condition, vork, 1970, vol. 1.
and surface ECG data to forewarn of fainting. Success fofJ. S. Lin and C. I. Weng, Int. J. Mach. Tools Man@8, 53—64(1990.
these diverse applications provides confidence that this aﬁfél S.Linand C. I. Weng, Int. J. Mech. S&, 645-657(1991).
proach is useful for detecting condition change in nonlinear F. C. Moon, “Chaotic dynamics and fractals in material removal pro-

. . . . cesses,” inNonlinearity and Chaos in Engineering Dynamieslited by J.
and chaotic processes for both machine and biomedical ap-, 1 ¢ R4 9 g Dynem Y

http://

hompson and S. R. BishdpViley, New York, 1994, Chap. 2.

plications. 381, Qu, A. Xie and X. Li, Mech. Mach. Theorg8, 699—713(1993.
17G. Sfean, Retarded Dynamical Systems: Stability and Characteristic
Functions Pitman Research Notes in Mathematit¥iley, New York,
1989, Vol. 210.
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