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Timely detection of dynamical change in scalp EEG signals
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We present a robust, model-independent technique for quantifying changes in the dynamics
underlying nonlinear time-serial data. After constructing discrete density distributions of
phase-space points on the attractor for time-windowed data sets, we measure the dissimilarity
between density distributions via -distance ang? statistics. The discriminating power of the new
measures is first tested on data generated by the Bondarenko ‘“synthetic brain” model. We also
compare traditional nonlinear measures and the new dissimilarity measures to detect dynamical
change in scalp EEG data. The results demonstrate a clear superiority of the new measures in
comparison to traditional nonlinear measures as robust and timely discriminators of changing
dynamics. ©2000 American Institute of Physid$$1054-15000)00504-§

One of the most important problems encountered in non-
linear time-series analysis is the appropriate character-
ization of changes in the system’s dynamics. This prob-
lem is particularly vexing in physiological systems, which
are more often than not: complex, nonlinear, nonstation-
ary, and affected by noise. It is generally accepted that, in
relation to epileptic phenomena, the brain behaves like a
reasonably low-dimensional dynamical system whose dy-
namics may vary between (quasi-)periodic and com-
pletely irregular (chaotic). Thus, to a certain extent, glo-
bal aspects of brain dynamics may be legitimately
quantified by traditional nonlinear descriptors such as
Lyapunov exponents, Kolmogorov entropy, and correla-
tion dimension. While these descriptors are adequate for
discriminating between clear-cut regular and chaotic dy-
namics, they are not sufficiently sensitive to distinguish
between slightly different chaotic regimes, especially
when data are limited andor noisy. Most brain dynamics
prior to, during, and following an epileptic seizure fall
within the latter regime. Therefore, robust and timely
forewarning of epileptic seizures has remained an out-
standing medical challenge, especially for nonhospital-
ized patients. To address this problem, we introduce four
new measures of dissimilarity that are much more sensi-
tive than the traditional nonlinear measures. Following
standard techniques, our method converts time-serial
data to a geometric representation, that describes the dy-
namics of the underlying nonlinear system, namely, the
brain, on the corresponding attractor in the phase space.
The frequency and sequence of visitation of various
points of the attractor are described by a distribution
function (DF), which does not change if the dynamics
remain unchanged. If the dynamics change, the attractor
and the DF will change as well. To compare a test case

DF to the base case DF, we define various distances be-

tween the DFs. A significant distance signifies that the

preted as a forewarning of an impending unusual event,
possibly a seizure. Our method combines several original
advances to achieve sensitivity which is at least two or-
ders of magnitude larger than that obtained to date by
competing methods. First, before constructing the phase
space distribution, we remove confounding artifacts, such
as eye-blinks, with a new zero-phase quadratic filter. Ar-
tifact removal allows detection of dynamical charge from
single-channel, scaldas opposed to multichannel, subdu-
ral) EEG, thereby enabling noninvasive, ambulatory,
long-term, nonclinical monitoring. Second, we use differ-
ential measures of dissimilarity which preserve a much
higher content of dynamical information than the tradi-
tional measures that average out dynamical changes by
integration of large amounts of data. Third, our tech-
nique applies to various seizure types as opposed to
present approaches that focus on temporal lobe epilepsy
only. Finally, our technique has provided robust fore-
warning of seizures for a variety of clinical data: digital
and analog from various sites; 200 Hz and 512 Hz sam-
pling; raw data precision between 10 and 12 bits; pres-
ence of substantial noise; and use of a variety of channels
in the 1020 montage, as well as a single channél3) in
the bipolar montage.

I. INTRODUCTION

Physiological systems in either normal or pathologic
conditions display a very rich variety of dynamical behav-
iors. These behaviors manifest themselves in signals that can
be interpreted at various levels, namely, clinical, physiologi-
cal, chemical, physical, etc. In the last two decades, since the
advent of chaotic dynamics on the scientific stage, there has
been strong re-energized interest in reading and interpreting
physiological data within a physical framework. The dy-

system has departed from the base case and can be inter- namical approach is motivated by several features that are
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shared by physiological and complex physical systemsinterruption that require immediate medical intervention. On
namely, multiple time scales, quasiperiodicity, chaos, andhe other hand, many seizures are not life threatening or even
self-organization. Typically, these system8) comprise serious medical events; they are simply a social nuisance and
many componentsiii) have hierarchical structurdiii) are ~ embarrassment. Consequently, a robust, reliable, and unob-
driven by competing forces; an@Vv) interact strongly with  trusive seizure warning systemvould provide a new treat-
noisy and/or nonstationary environments. It is therefore reament paradigm whereby patients would be constantly moni-
sonable to assume that, under certain circumstances, one camned rather than medicated. When preseizure activity is
use the same framework to analyze and interpret physical agetected, the patient can be forewarned to take timely pre-
well as physiological time series; this approach wouldventive steps such as interrupting one’s activity and lying
complement traditional medical diagnostics, warning, predown in a quiet place, taking medicine, requesting emer-
vention, and cure, with more precisely quantified assessgency responders, or contacting one’s physician.

ments. Several related problems have been recently pursued by

Quantitative analysis of physiologic time series has beemoth the medical and scientific community. We mention
a difficult and frustrating problem. The most important issuesamong others(i) modeling and analysis of the brain as a
include: dynamical system(ii) chaotic analysis of the EEG dal3,

(i) Lack of proper(physica) modeling for physiological (jii) seizure onset predictiort and(iv) seizure mitigation by
phenomena. As a result, signals have to be considered @daos anticontrdl. Similar problems have been studied for
generated by a black box whose internal mechanism is eithghe heart in connection with ECG data, heart attack preven-
poorly understood, or not understood at all. tion, and control of fibrillation, and, more recently, for the

(i) Signals are usually nonstationary, i.e., statisticallungs.
properties of the signal may change significantly over the  Qur approach to the warning problem is purely prag-
observation period. Usually this change is not knaavpri-  matic. We set aside deep and difficult questions about the
ori and not explicitly advertised. nature of the brain and brain dynamics or the accurate de-

(i) Usually, physiological time series are nonlinear, be-scription thereof. Indeed, current literature provides evidence
Iylng the nonlinear structure of various organ dynamiCS aanoth f0r5_7 and againgfll the description of the brain as a
their complex, intricate interconnection, rich in feedbacks|gw-dimensional dynamical system. We think that the jury is
and hysteresis. still out on this issue, and will be for some time to come.

(iv) Physiological systems rarely function at steady stateconsequently, here wassumethat the brain behaves like a
On the contrary, living processes typically occur far fromreasonably low dimensional dynamical system and, there-
equilibrium, and use continuous feedback and control to adggre, global aspects of the brain dynamics can be conve-
just to changing conditions. niently characterized by nonlinear descriptors such as

One of the most important problems encountered in nonkyapunov exponents, Kolmogorov entropy, correlation di-
linear time-series analysis is the appropriate characterizatiomension, eté.
of changes in the system’s dynamics. As mentioned before, Moreover, we make no attempt to answer gquestions
these changes may have various origins, namely, nonstatioabout nonstationarity or nonequilibrium per se. Indeed, sta-
arity, nonlinearity, and nonequilibrium. The presence of anytistical tests for stationarity produce a binary result, namely,
one of these factors in the dynamical equation frequentlyhey indicate whether or not a change occurred but provide
introduces erratic fluctuations, patchiness, lack of obviousio information about the extent of departure from one state
structure, or other irregularities with a multiplicity of widely to another. Stationarity tests also have limited value for in-
disparate length- and time-scales. Often times, these irregirerently nonstationary processes that undergo frequent or
larities have been neglected as noise without much structuontinual changes in dynami¢s.g., physiological data, like
and meaning. However, recent advances in chaotic dynamidsEG). For such nonstationary processes, a measure of dis-
facilitate the interpretation of these intermediate and smalsimilarity that quantifies the “distance” between attractors
scale details as structure with significant information abouturns out to be more usefld:'® Straightforward methods
the underlying dynamics. Accounting for this structure exist*~*®for discriminating between regular and chaotic mo-
would enable a deeper understanding of basic dynamical fedion, or for detecting the transition between these regimes.
tures of the heart, brain, and lungs, and result in more effiHowever, distinguishing different chaotic regimes can be
cient assessment, prediction, prevention, control, and treatery difficult, especially when data are limited and noisy. We
ment. describe four sensitive measures of dissimilarity, applying

The aim of this paper is to describe a new method forthem first to model data and then to scalp EEG data. Our
detecting dynamical change in scalp EEG signals as an adrethod is useful fofl) discriminating between different and
ditional quantitative means to complement timely clinical possibly close chaotic regimes, af®] monitoring the extent
forewarning of a possible epileptic seizure. Epilepsy afflictsof departure of a system from a given dynamical state.
many millions in the U.S. alone. Epilepsy can be effectively = The paper is organized as follows: Sec. Il discusses
treated and many patients are indeed under constant medicgeme traditional nonlinear measures for time series analysis.
tion. However, constant medication frequently has sever&ection Ill presents our indicators of dynamical change by
side effects. Moreover, between 10% and 30% of the casesomparison of the phase-space distribution functions via dis-
cannot be controlled by medication. In addition, some exsimilarity measures. Section IV describes the discriminating
treme seizures are accompanied by heart failure or breathingpwer of these measures on a “synthetic brain” model pro-
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posed by Bodnarenko, in which changes are easily monitorethat makess; independent ok; . The MIF,1(q,r), and sys-
and controlled. Finally, Sec. V explains the use of these meaem entropyH, are defined by

sures on experimental EEG data to detect the transition be- _ _

tween nonseizure and epileptic brain activity. While the dis- Ha.n=Hr.q)=H(@+HI)=H(q.n), @
similarity measures reflect the inherent noise in the EEG
data, detection of preseizure condition change is clearly su- H(@)= _Ei P(g)log[P(qi)], 2
perior to that realized using traditional nonlinear measures.

H(q,r>=—i2j P(q;,r)log[ P(q;,rj)]- 3)

II. NONLINEAR MEASURES FROM TIME SERIES For a window ofw points, we denote one set of data mea-

] ) ) o _ surements byq;,q,, ...,qy, With associated occurrence
Our analysis begins with a process-indicative scalar Si9%robabilitiesP(qy),P(dy), . . - ,P(qy,). R denotes a second

nal, x, from a dynamical system whose dimensionality andget of gata measurements, f , r,, with a time delay

. . . ” 7 b wo
structure are usually unknown. This signal is sampled afg|aive to theg; values, having associated occurrence prob-
equal time mterv_als,r, starting at timef,, ypldmg ase-  apjlities P(ry),P(ry), ...,P(r,). The function P(q; )
quence of.NH‘pomts, Xi=x(to+i7). Dynamical process genqtes the joint probability of both states occurring simul-
reconstruction” uses d-dimensional time-delay Vectors, (anequslyH and! are expressed in units of bits if the loga-
y()=[Xi Xisx, - Xir@-1pnl, for a system withd active  jihm is taken in base two.
variables and time lagy. The choice of lag and embedding (i) The maximum-likelihood correlation dimensioB,
dimension,d, determine how well the phase space recon+g yefined b§528
struction unfolds the dynamics for a finite amount of noisy .
data. Takens found that, forcadimensional system, @+ 1 __ s B
dimensions generally results in a smooth, nonintersectim{qD [( 1/M)i2,j IN[(3ij/ 8060/ 60)/(1=nl S0)]1
reconstructiort! Saueret al*® showed that, under ideal con- (4)

ditions, the first integer greater than the correlation d'menWhereM is the number of randomly sampled point paifs;

sion is often sufficient to reconstruct the system dynamicsg tha maximum-norm distance between trendomly cho-
This last statement has been confirmed by computing thger) i—j point pairs, as defined in Eg6) (below). The dis-

embed?g@gl dimension via the false nearest-neighborg,,cescale length &, is associated with noise as measured
method. que\{er, rgal data have'flnlte length and ACrom the time serial data. Note that the distances are normal-
affected by noise, implying that too high an embedding di-, 4 \vith respect to a nominal scale lengfy, which is
mension may result in overfitting. We further note that dif- chosen as a balance between sensitivity to local dynamics
ferent observables of a system contain unequal amounts ?fypically at 5,=<5a) and avoidance of excessive noisgi-
dynamical informatiorf? implying that phase space recon- cally at 5,=a). Here, the symbok denotes the absolute

struction could.be easier from one variable, but more d'ﬁ"average deviation as a robust indicator of variatffiip the
cult (or even impossible from another. Our subsequent time serial data

analysis is mindful of the balance between these caveats and
the constraints imposed by the limited amount of noisy data. d

Based on the phase space reconstruction, various nonlin- a:(ll""); X=X, )
ear measures have been defined to characterize process dy-
namics. We choose three of these nonlinear measure¥herex is the mean ok; over a window ofw points. The
against which we compare the new metrics. In particular, wélistancess;; are defined by
use(i) the first minimum in the mutual information function Si= max X —Xsil, (6)
as a measure of decorrelation tintie) the correlation dimen- O<k=m-1

sion as a measure of dynamic complexity, iid the Kol- wherem is the average number of points per cycle.

mogorov entropy as a measure_of predictapility. We briefly (iil) The Kolmogorov entropyK, measures the rate of
describe these three measures in the following paragraphsinformation loss per unit time o(ralt’ernatively the degree
(i) The mutual information functiofMIF) is a nonlinear ’

version of the(linear autocorrelation and cross-correlation of predictability. A positive, finite entropy generally is con-

functions, and was originally developed by Shannon andc,ldered to be a clear demonstration that the time series and

Weavef? with subsequent application to time series analysisItS underlying dynamics are chaotic. A large entropy indi-

by Fraser and Swinned%. The MIE measures the average cates a stochastic, no_ndetermlmsttotally unpredictable
: R : phenomenon. One estimates the entropy from the average
information (in bits) that can be inferred from one measure-

. ) divergence time for pairs of initially-close orbits. More pre-
ment about a second measurement, and is a function of the ) : .
. L cisely, the entropy is obtained from the average time for two
time delay between the measurements. Univariate MIF mea:

sures predictability within the same data stream at differeng)';;S tcz)n aazeat;rrzg?r: I)Of r?w?)rferotwagnaIgltlsliﬁs%?;?;ri?e ((
times. Bivariate MIF measures predictability of one data_ %’ Pe ileal P

. . .. >06). The maximum-likelihood entropy is calculated from
channel, based on measurements in a second signal at d|ff%-e method by Schouten. Takens. and van den Bleek
ent times. For the present analysis, we use the first minimum y ' ' '

in the univariate MIFM, to indicate the average time lag K=—fglog(1—-1/b), (7)
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M N, andd) depends on the specific data under consideration.
b=(1/M )E b;, (8) In the preliminary phase of the analysis, we iteratively varied
=1 each parameter with the others fixed, to obtain optimum sen-
with b; as the number of timesteps for two points, initially sitivity of the measures to changes in system dynamics for
within §<&,, to diverge tos>8,. The symbolf, denotes each class of data evaluated. After realizing optimal sensitiv-
the data sampling rate. ity, the values of the parameters were kept fixed. A system-
Entropy and correlation dimension usually are defined inatic method to determine optimal values for these parameters
the limit of zero scale length. However, all real data haveis the subject of future work.
noise and even noiseless model data is limited by the finite ~We use an embedding windoW,;=(d— 1)\, based on
precision of computer arithmetic. Thus, we choose a finitghe first minimum in the mutual information functiokl; .%*
scale length that is slightly larger than the noigg#2a), at  This choice of time delay provides maximal information for
which to report the values ok and D, corresponding to the reconstruction of the phase space dynamics. Then, we set
finite-scale dynamic structure. Consequently, the valuéé of A=INT[0.5+ M, /(d—1)] to obtain an integer value for the
andD that we report do not capture the full dynamical com-reconstruction lag whetfM; is not evenly divisible byd
plexity and have smaller values than expected for the zero= 1. The reconstruction requires thet 1, thus constraining
scale-length limit §;—0). the largest value of dimensionality tb<2M;+ 1 from the
above formula.
We next compare the distribution function of a testcase
l1l. DEFINITION AND USE OF THE NEW MEASURES process state to that of a basecase. Rikal?® measured

The traditional nonlinear measures described in the preg|fferences_ between delay vector d|st.r|bu.t|or?s by the square
f the distance between two distribution functions.

vious section characterize global features of the nonlinea . R : .
g chreibet? measures dissimilarity via the Euclidean distance

dynamics and distinguish sufficiently clearly between, say W h ints of the atractor. Thi
regular and chaotic dynamics. However they do not easil;pe een phase-space points of the atlractor. 1his measure

reveal slight dissimilarities between dynamical states. TheOnly accounts for the geometrical shape and location of the

same is true for other global indicators, such as fractal gj@ttractor. Manuca and Satiimeasure dissimilarity via ratios

mension, Lyapunov exponents, etc. This lack of discrimina-Of the correlation integral over the DF. This is essentially the
' P frrelation dimension discussed in the previous section.

tion occurs because the traditional measures are based h di dissimilarit f

averaged or integrated system properties of the attractothoreover' t_ese lloaper? tllscus.ts |s§_||m ! ar|¥ Measures from

which provide a global picture of long-term dynamical be- 1€ perspective of nonstationarity, whrie our focus 1S on con-
dition change, as explained in the Introduction. Thus, here

havior. Traditional nonlinear measures ultimately provide the diff bet ith R by the v2
only one or a few scalar measures as summary descriptors measure the dirierence be ween wi i 0y the x
statistics and., distance,

large data segments.

Greater discrimination is possible by more detailed ) )
analysis of the reconstructed dynamics. The nat(oalin- X2=2 (Qi—R)(Qi+Ry), (10
varian) measure on the attractor provides a more refined '
representation of the reconstruction, describing the visitation
frequency of the system dynamics over the phase space. To '—:Z |Qi—Ril, (1D
obtain a useful discrete representation of the invariant mea-
sure from time serial data, we proceed as follows. We firstvhere the summations in both equations run over all of the
represent each signal value,, as a symbolized forms;, populated cells in the phase space. The choice of these mea-
that is, one ofS different integers, 0,1,..,S—1, sures is dictated by the following considerations. Tyfe

statistic is one of the most powerful, robust, and widely-used
0= 5= INTLS(X = Xmin)/ (Xmasx— Xmin) ] < S—1. 9 statistical tests to measure discrepancies between observed

Here, the functionINT) converts a decimal number to and expected frequencies. Thedistance is the natural met-
the closest lower integer, ang,;, andX,a, denote the mini-  ric for distribution functions since it is directly related to the
mum and maximum values a&f , respectively, over the base total invariant measure on the attractor. We note that these
case (reference data We previously usett the minimum  measures account for changes in the geometry of the attrac-
and maximum values over both the basecase and testcase and for changes in the DF as well. To apply these mea-
(data to be tested for departure from the basgc&kmvever, sures properly we scale the total population of the unknown
in real- or near-real-time analyses, only basecase extrema agéstribution function(sum over all the domain populations in
actually known. We require thaf(xij=Xma) =S—1 inorder R;) to be the same as the total population of the basecase.
to maintain exacthy8 distinct symbols. Thus, the phase spaceThe sum in the denominator of EA.0) is based on a test for
is partitioned intoS® hypercubes or bins. By counting the equality of two multinomial distribution¥
number of phase-space points occurring in each bin, we ob- The previous analysis can be extended in a natural man-
tain the distribution function as a discretized density on thener that is inherently compatible with the underlying dynam-
attractor. We denote the population of fitlke bin of the dis- ics. By connecting successive phase space points as indicated
tribution function, Q;, for the base case, ari®} for a test by the dynamicsy(i)—y(i+1), one obtains a discrete rep-
case, respectively. For infinitely precise data, this represemesentation of the process flow. We thus form a
tation has been used in Ref. 28. The choice of parame$ers ( 2d-dimensional vectorY(i)=[y(i),y(i+1)], in the con-
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nected phase space. As befa@eandR denote the distribu- proof when summed over all values iofOne can prove Eq.
tion functions for the basecase and testcase, respectively, {@5) by the same argument. The proof for E@6) follows
the connected phase space. We define the measure of ddirectly from the definition of thé.;-norm,

similarity between these two connected phase space states, as

before, via thel ;-distance and,? statistic>* L=> [Q-R|=> ‘2 (Qj—Ry))
i T 1T
2_ 2
Xi=2 (Q—RZ(Q;+Ry), (12
! =2 2 |Q~Ryl=L.. (18)

L —2 |Qi; — Rijl (13 Proving Eq.(17) amounts to showing
The subscript indicates the connected distribution function 2 [Z(Qi— Rij)]z \E 2 (Qll IJ) (19)
measure. We note that the valhe=1 results ind—1 com- T 2i(Qjt Ry T T QitRy

ponents ofy(i +1) being redundant with those gfi), but
we allow this redundancy to accommodate other data such aty
discrete points from two dimensional maps. Using pairwise
connectivity between successivkdimensional states, this
approach captures even more dynamical information. This
asgltlonal ImE)ormatlon results mya higher discriminating write the inequality between thiéh terms as
power of the connected measures as compared with thej 4Q;iR;;

nonconnected counterparts. Indeed, we can prove that t Qij TRjj— QR _2 (Qij +Rij)
measures defined in Eq40)—(13) satisfy the following in- nee

ereQ,J ,R;j=0, not allQ;;=0 and not alR;; = 0. Inequal-
(19) is proven if it holds independently for each term in
the i-sum.

By noting that A—B)?=(A+B)?—4AB, we can re-

equalities: ! 2jQij 2R
<L, (14) 2jQij+ 2R
Xe=Le, "o - ( I . LR (20
L<L, (16) ZLQutELiRy = QR

2_ 2 17 We shall prove inequalityf20) by complete induction.
XS Xc- We denote the expression in the last brackets Hy
To prove Eq.(14), we note that for any non-negative num- =[NM/(N+M)] =S, where NzE?ziQij M :2?=iRij ,
bers,Q; andR;, we have Q;+R)=|Q;—Rj|. Dividing the  andS=X7_;[Q;;R;;/(Q;; +R;)].

equality @Q;—R;)?=|Q;—R;|? by the preceding inequality For n=1E;=0. Suppose now tha,=0 for somen
yields (Q;—R)?%(Q;+R;)=<|Q;—Ri|, which completes the =2 and evaluate

(N+Qn)(M+Rnea) - QneaRoes
"1 NF Qi g+ M+ Ryig Qn+1tRnsy
_ MN+NRy 1+ MQp 11+ Qps 1R 1= NS=Q 1 S—MS—Rp11S  Qpe1Rnig
N+Qn+1+M+Rn+1 Qn+1+Rn+l
- NRy+1+MQpi1+Qni1Rps 1= Qi1 S— Rn+1S_ Qn+1Rn+1 (21)
N+Qn+1+M+Rn+1 Qn+1+Rn+1,
I
where we have used thtN—NS—MS=0 sinceE,=0. By multiplying with M +N and canceling terms we fi-

After some algebra and taking into account thatthe  nally obtain MQ,,;—NR,.)? which is obviously non-
denominators are positive ard) —S=—-[MN/(M+N)] negative.

we transform Eq(22) into Equation(17) follows without difficulty from a similar
complete induction argument. These inequalities show that,
MQA:1~SQ1—2Qn+1Ry+1S+NRS, — SR, as expected, the measures of condition change for the con-
MN nected phase space are stronger than those for the phase
=MQ7,,— MTN QA 2Qn+1Rn 1N space representation.

In the subsequent application of the new phase space
measures to discriminate condition change, we note that dis-
tribution function values depend on one another due to phase
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space construction from time delay vectors with dynamicaimeasures by partitioning each 100 000-point Bondarenko
structure?® The resulting statistical bias is avoidable by av- dataset into four nonoverlapping subsets of 25000 points
eraging contributions to Eq$10) and (12) over values of each, for comparison to each of the 25 000-point subsets of
y(j) or Y(j) which satisfy|i—j|<A,%® where A is some basecase at=5. We compared each of the four testcase
largest typical correlation scale length in the time series. Wesubsets to each of the four basecase subsets, yielding 16
tested the bias in typical data by sampling evAnth con-  values for each of the four measures of dissimilarity, from
nected phase space point fosA <23, resulting inA dif- which we obtain a mean and the standard deviation of the
ferent samples for the base cas@; and for each cutset mean. We use one of the ten neuron signals for dissimilarity
(R;). We then averaged the samplg@l values over the\? detection. For example, Fig. 1 shows various nonlinear mea-
different combinations of distribution functions for the base-sures vsc, by analyzing only the one neuron signal of the
case and testcase cutsets. As expected, a decrease profwondarenko system. We obtain similar results for other neu-
tional to 1/A occurs in the sampleg? values, because the ron signals. The correlation dimensipRig. 1(a)] varies er-
number of data points contributing tg?> decreases in the ratically between 3.5 and 8.5. The Kolmogorov entrpig.
same proportion. The trend over time in sampjgdvalues  1(b)] rises almost monotonically from 0.025 to 0.16. Figure
remains the same as yt values without sampling, showing 1(c) shows the location of the first minimum in the mutual
that no unexpected bias is present. Thus, we use unsampledormation function,M,, with erratic variation asc in-

x? values for the remainder of this work agelative mea-  creases. In sharp contrast, ffe®nnectefi phase space mea-
sure, rather than as an unbiased statistic for accepting @ures[Figs. Xd) and Xe)] increase almost monotonically
rejecting a null statistical hypothesis. from zero to more than 810* asc rises from 5 to 18. The
values ofL and y? essentially coincide over the whole range
because the measures are dominated by phase space bins that
are populated only for the basecaBe>0 for Q;=0 and
only the testcas®;>0 for Q;=0, for which the two mea-

We assess the discriminating power of the new measuresfres become analytically equivalent. The curves in Figs.
by testing them on the Bondarenko “synthetic brain” 1(d) and Xe) correspond to the average measure of dissimi-
model®2 which is described by a coupled set of time-delayedarity, while the error bars indicate the standard deviation of
ordinary differential equations, the means. We show error bars for the nonconnected phase-

space metrics only, because error bars for the connected

phase measures are comparable. As expected from Egs.

(14)—(17), the connected phase-space measures are stronger
(22)  than their nonconnected counterparts.

IV. APPLICATION TO THE BONDARENKO MODEL

M
ui(t)= —ui(t)+i§=:j ay f(u;(t—1)),

ij=12,... M.

This model is the generalization of the Hopfield model for

T o V. APPLICATION TO EEG DATA
the electronic circuit realization of a neural network by add-

ing a time delayr; . Hereu;(t) is the output signal of thih We turn next to analysis of brain wave data, which have
neuron. The matrix;; denotes the coupling coefficients be- been described in terms of nonlinear dynanfid$onlinear
tween the neurons, with randomly chosen value2<a;; EEG measures are not stationafydisplaying instead

<2. The indices andj run from 1 toM =10 (ten neurons marked transitions between normal and epileptic states. EEG
The time delay of thgth neuron outputy;, is constant and data display low-dimensional featufés with at least one
equal to 10. The nonlinear response functiof(x) positive Lyapunov exponefit® and hence positive Kolmog-
=ctanh§), simulates nonlinear neural response to signalorov entropy. EEG data also display clear phase space
from neighboring neurons. The coefficiants used in order  structure®® on which our analysis relies for measuring con-
to change the values of the coupling coefficients between thdition change in the Bondarenko modske previous sec-
neuronsa;; simultaneously. tion) and the Lorenz attractdf. We find that phase space
As mentioned before, some traditional nonlinear meaimeasures are useful for nonlinear detection of condition
sures are good indicators of a bifurcation or transition tochanges in brain wave dataWe emphasize that our work
chaos. However, transitions between two chaotic regimes amelies on scalp EEG which measures the synchrony in corti-
not readily detected by these same measures, especially foal neurons on an area of roughly 6 TnOur analysis as-
relatively small changes in the parameter that underlies theumes that both the traditional and the new measures are
transition. Therefore, the present work concentrates on meaensitive to changes in this synchrony.
suring dissimilarity within a region where the Bondarenko Nine data sets with 16 channels of analog scalp data in
system is known to behave chaoticaly5<c<18. We in- the bipolar montage were obtained from archival VHS
tegrate the model using a standard fourth-order Runge—Kutt@pes®’ We used only channel 13, closest to the patient’s
method® with a time step oh=0.3. We allow a time of 4 right eye. We note that channel 13 in the bipolar montage is
x 108 h for the solution to achieve stationarity after initiating an old designation for the difference between channels FP2
the integration with random impulses;(t=0)= p; with p; and F4 in the 10/20 montage. We used channel 13 in initial
having uniformly random values; 2<p;<2. We calculated analyse$31] to demonstrate the robustness of the zero-phase
100000 data values af; at fixed time intervals oA\t=60  quadratic filter for removing the eyeblink artifa@iscussed
for each value ot. We obtained théconnectetiphase space below). We digitized this data at a sampling rate of 512 Hz
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with 12-bit precision, corresponding to integers betweerbut such methods are invasive and nonambulatory. We re-
—2048 and+2047. Table | summarizes these nine datasetesnove most of the low frequency artifacts from the scalp
with monitoring periods of 1380—3115 s. Seizures begin aEEG data with a novel zero-phase quadratic filter, which—

times ranging from 966 and 2775 s. The seizure times ifunlike standard linear filters—retains the nonlinear ampli-
Table | were indicated on the records by the attending clinityde and phase relationshifs.

cians. _ o This filter uses a moving window ofr2+ 1 points of raw

. _We a_mlso .examlned digital EEG scalp data from otherggg data,e;, with the same number of data points, on
clinical sites in the 10/20 International System of electrod(?ei,mer side of a central point. We fit the data to a quadratic
placement, sampled at 200 Hz. These data have 10-12 b'é%]uation of the formF(t)=a,T%+a,T+as, with T=t
of precision, with signal amplitudes between 0 and 3000, ’ ! 2o

. —t., andt; the time at the central point of the movin
depending on the dataset. They were collected from a num-. ¢ ¢ P 9

. . - .~ window. We fit this quadratic form to the data, by minimiz-
ber of channels, varying between 23 to 32, with monitoring. - 2 .
periods between 2217 and 20000 s. The clinical seizure$Y \P_.E[F(t)_?i] ' \{vhere the sum 1S over t.hen2rl
begin at times that range between 1930 and 15750 s. wigoints in the m_o_vmg window. The_mlnlr_num i is fo_und
examined only one clinically interesting channel in each of oM the conditiong¥/Ja,=0, which yields three linear
these eleven datasets, as shown in Table I. In all cases tifguations in three unknowns. The window-averaged artifact
data were obtained by physicians under their own Humat the central point is given by the fitted value of the central
Studies IRB approval which included informed consent byPoint, F(t.=t;)=az. We note that the sums over odd pow-
the patients. ers of T; are zero and that symmetric sums over even powers
All scalp EEG are obscured by muscular activity due toof T; (overi from —n to n) can be converted to sums from
eye blinks, facial twitches, etc. These artifacts are avoidablé to n, giving a window-averaged solution for the artifact
by obtaining EEG data from depth or subdural electrodessignal,
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TABLE |. Summary of EEG datésee text for discussion

Number Time of Dataset Sample
Dataset of seizure length Channel rate Preseizure Seizure
No. channels (seconds (seconds analyzed (Hert2) activity descriptioft

109310 16 2775 3115.3 13 12 Asleep *

109314 16 2480 2742.4 13 F12 Drinking fixed gaze

119230 16 2491 2917.4 13 F12 Sponge bathing tonic

119234 16 2560 2649.6 13 F12 Asleep *

62723t 16 2620 3060.8 13 512 * *

69212 16 2356 2547.8 13 512 Moving in bed subclinical

73305d 16 1245 1380 13 592 Talking *

€8492d 16 966 1603.6 13 512 Awake/in bed tonic

wm12sd 16 1041 1428.6 13 F12 Hangs up phone tonic

szprec 32 1930 2217 F7 200 *

szpr00 23 5236 5401 Fp2 200 * G, TC

szpr03 32 1932 2217 T4 200 * 2'G

szpro4 23 3794 3963 T4 200 * G

szpr05 23 4888 6000.2 T4 200 * G

emu002 27 4320 15 066 F4 200 * LH onset,
dorsal convexity
outside the
temporal lobe

emu003 27 13200 16 228 C3 200 * A, LF focus

emu004 27 15750 18 423 C4 200 * focal with partial
seizures arising from
R anterior mesial
temporal

emuld 27 4080 20222.2 F4 200 * symptomatic G

emul8 27 4200 18 000.2 T3 200 * focal arising from
L anterior to mid-
temporal area

emu26 26 13.987 16 224 Fpl 200 * focal arising from

R anterior
temporal area

&' G = secondarily generalizing seizurez=left; A=atypical; R=right; F=frontal; T/C=tonic/clonic seizure; Ggeneralized seizure; Hhemisphere.
PThe 512 Hz datasets were acquired before 1995, and subsequent personnel changes make the information for these entries unavailable. Be&mizure acti
the other datasets was not provided.

F(t=to)=[3(3n?+3n—1)(Ze;,.)— 153i% )]/ =22000 data points (118) for each cutset of the eleven
) datasets, sampled at 200 Hz.
(4n“+4n—3)(2n+1). Our previous analysis of EEG daf4°found correlation

The sums in this last equation are ovdrom —n to n, dimension values ranging between 2 and 6, consistent with
with sums over even powers fexplicitly evaluated with ~ values found by other groufs® These results suggest a
standard formulas. The effort to evaluate this equation can behoice ofd<7 for the connected phase space reconstruction.
reduced further by computing the sums initially from the However, we find thatl=7 overfits the EEG data due to
above equation withc=n+1, and then using recursions noise, modest cutset size, and the finite precision. We itera-
thereafter. Application of this filter to thi-point set of raw  tively varied each phase-space construction parameter with
EEG datag,, yields N—2n points of artifact dataf;, that  the others fixed, to obtain optimum sensitivity of the phase-
contains the low frequency artifact signal. The residualspace measures to EEG changes. We subsequently per-
(artifact-filtered signal,g;=¢;—f;, is free of low-frequency formed all EEG analyses with the single best choiceSiaf,
activity. and N. In particular, we found the best phase-space recon-

The filter window width corresponds to eye blink activ- Struction parameters using the nine 512 Hz datasets, and then
ity at 2 Hz, for whichn=128 in the nine datasets with a 512 fixed the parameterd=3, N=22 000, andS=22 for all the
Hz sampling rate, and=50 in the eleven datasets with a subsequent analysis of the other datasets. For the nine
200 Hz sampling rate. All subsequent EEG analysis uses thidatasets, sampled at 512 Hz, the valuevof is taken from
artifact-filtered data. the first 430 s of(nonseizurg data; in the eleven datasets,

We chooseN =22 000 data points (43 for each cutset sampled at 200 Hz, the value M, is taken from the first
of the nine datasets, sampled at 512 Hz. This value balancédsl100 s of data.
the improvement in forewarning time discrimination at We use the first ten nonoverlapping cutsets in each of the
smallerN, with the statistical power to measure dissimilarity datasets as basecaséJhis choice is a balance between a
at larger N. For this same reason, we also chodde reasonably short basecase period to capture quasistationary
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nonseizure activity and a sufficiently long period for statisti- of condition change; this corresponds to a joint false positive
cal significance. However, a few of these basecase cutsemsobability of less than 10° in Gaussian data. Figure 3
are very different from typical non-seizure activity, causing ashows a typical example in which single excursions of the
severe bias in the detection of condition change. Thus, waonlinear measures above the threshold occur at 55 s and
statistically test the data for outlier cutsets as follows. Com-715 s. Consequently, we require two excursions above
parisons among the ten basecase cutsets yields=4% ( threshold as the criterion for condition change. Using this
X 10/2) unique pairs, from which we obtain an average, ‘“twice-in-succession” criterion, Fig. 3 shows clear fore-
and sample standard deviatian for each of the dissimilar- warning at 1100 s without false positives. We also note that
ity measuresV=L, L., X%, and Xﬁ. We calculate ay? the forewarning times in Table Il are determined by using
statistic,=(V;; —V)?/a?, for each of these four dissimilarity the full length of available data in all cases. We next use
measures. The indgxis fixed, to test thgth cutset against these renormalized forms for measuring changes in EEG.
the other nine cutsets, thereby giving nine degrees of free- Figure 2 shows the renormalized nonlinear measures for
dom in they? statistic. The null statistical hypothesis allows dataset #szprec. The vertical lines in these plots indicate on-
a random outlier in these 45 unique comparisons with &et of the clinical seizure at 1930 s and subsequent postsei-
probability of <1/45, corresponding to less than one out ofzure period. The nonlinear measures are plotted at the center
the 45 unique pairs. Thus, we identify an outlier cutset a®f the time window for each cutset. All of the measures show
having the largesp? statistic greater than 19.38 over the low to modest variability during the period of nonseizure
four dissimilarity measures, which corresponds to a probabilbrain activity (less than 900)s Figure 2a) shows the mini-

ity larger than 1/45. If this analysis does not identify any Mum,ep;,, and maximumen,,, in the raw EEG signal with
outlier, then the previous values ®¥fand are used for sub- NO clear preseizure features in the signal envelop. Other sub-
sequent renormalization, as described below. If this analysiBlots[Figs. 2b)—2(f)] show the renormalized nonlinear mea-
identifies an outlier, we remove it and repeat this analysis fopures, with a horizontal line indicating the threshold for con-
the remaining nine basecase cutsets. Repeated application@fion change detection,U.=3.09. The correlation
this analysis identifies any additional outliers when the largdimensionD [Fig. 2b)] rises above the threshold from 1250
est chi-squared statistic exceeds the below threshold, corré@ 1500 s, subsequently falls below the threshold, and then
sponding to a random probability of greater tham(B rises above threshold at 1925 s through the seizure. The Kol-
—1), as interpolated from standard statistical tablesBor Mogorov entropyK [Fig. 2c)] provides no preseizure indi-
—1 degrees of freedodf.Here, B is the number of nonout- cation, and rises abové. only during the seizure. The first

lier basecase cutsets. Thus, rejection of the null hypothesf@inimum in the mutual information functiod, [Fig. 2(d)]
corresponds to &2 statistic greater than 19.38, 17.24, 15.03,€xceeddJ. from 1250 to 1500 s, then falls below the thresh-

12.74, and 10.33, foB=10, 9, 8, 7, and 6, respectively. old without any seizure indication. In sharp contrast to these

This approach dramatically improves the robustness oyeak presejzure indications, Fhe renormalized phase-space
the condition change detection. If the analysis identifies fiveneasuregFigs. 2e)-2(f)] all rise above the threshold at
(or more outliers, we would have to reject all ten basecased-195 S, rising still further near and immediately following
as unrepresentative, and acquire a new set of ten cutsets B§ Seizure.
basecases. However, the present analysis never finds more
than four outliers. Subsequently, we compare the nonoutliefasLE 1. Difference(s) between seizure onset and change detectios).
basecase cutsets to each nonoverlapping testcase cutset, @nties with an asterisi ) show no positive indication of change. For each
obtain average values for the dissimilarity measures for eactiptaset, bold entries denote the earliest time of change.
testcase.

. N . Dataset No. D K M L L 2 2
The disparate range and variability of the various non- ' ¢ Xe X
linear measures are difficult to interpret, so we need a cont09310 1099 = * -61 61 1142 -61
sistent means of comparison. Thus, we convert the nonlinedf9314 1921 1406 1835 1878 1921 1921 1921
. . 119230 901 386 —216 471 —44 471 514
measures to a renormalized fofnEor each nonlinear mea-

> ) . 119234 1915  * * 1915 1915 1915 1915

sure,V=D, K, My, L, L¢, x°, andyg, we defineV; as the  g2723; 1374 —44 2233 1675 2233 2233
value of nonlinear measure for thth cutset. As beforey is 69212 * 165 637 1626 1497 1626 1626

the mean value of that nonlinear measure over the nonoutliei3305d 600 600 * 343 772 87 772
basecases, with a corresponding sample standard deviati6?*92¢ —22 %21 364 193 193 193 193

. ... wmil2sd * * * —76 10 10 10

o, as described above. For the new measures of dissimilar-

ity, namely L, L., x?, and Xﬁ, V; is averaged over the szprec 500 -160 500 610 610 610 610

nonoutlier cutsets. No such averaging is donelorK, and ~ szPr00 * * 1496 726 -154 836 1716
M, since the calculation of these measures involves only on&"%3 ~158 —188 172 802 802 502 502
. ) . Szpro4 -166 %  —166 384 384 384 384

cutset at the time. The renormalized form is theifV)  szpros 3568 3348 3568 3678 3568 3678 3568

=|V;=V|/o, which measures the number of standard deviaemuoo2 * —-190 —-410 2230 2780 1900 2780
tions that the testcase deviates from the basecase mean. Famai003 * * * 12760 12760 12760 12760

positive indication of change, we usé=Uc=3.09, corre- emuggj * 6950 ’5‘40 132;58 13 65753 14 25;‘8 132;58

. s e — emu * * - -
sponding to a false positive probability of less than 1an omu0L8 T90 —1630 -310 3650 2200 3650 2220

Gaussian random data. To avoid spurious fase positives, We, 026 11127 11237 4747 11237 11237 11237 11237
require two or more consecutive occurrences for indication
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Figure 3 displays the renormalized nonlinear measureside preseizure indications in all 20 cases. In sharp contrast,
for dataset #szpr03, for which the onset of clinical seizurehe tradition nonlinear measures only give the earliest fore-
occurs at 1932 s. Figurg@® shows the minimume,,;,, and  warning of a seizure in 1, 1, and 3 instancesKoM,, and
maximum,enax, in the raw EEG signal with little preseizure D, respectively. These same traditional measures provide no
amplitude variability, except four positive spikes betweenforewarning of a seizure in 7, 8, and 6 cases, respectively.
450 and 750 sD [Fig. 3(b)] andK [Fig. 3(c)] give essen- The sum of the earliest-forewarning times exceeds twenty,
tially no preseizure warning, exceeding the threshold fobecause more than one measure can simultaneously detect
condition change immediately prior to and during the sei-condition change. A topic of future research is improvement
zure.M, exceeddJ. at 1375 s and at 1595—-1815 s, but doesof the method to provide the earliest possible indication of
not indicate the seizure. The connected phase-space measndition change. We also note that the forewarning tite
sures(solid lineg in Figs. 3e)—3(f) show a single excursion s) for dataset #wm12sd is too short to be clinically useful. In
above threshold at 715 s. Subsequently, all of the phaseddition, the forewarnings of more than 1 (Hatasets #
space measures rise and stay abdye beginning at 1265 s emu003, emu004, emuORére too long to be clinically use-
through seizure. ful. We conclude that the phase space measures are much

Table 1l summarizes the forewarning times for eachsuperior to the conventional nonlinear measures as presei-
measure over all 20 EEG datasets. A negative value of forezure indicators of condition change for a single channel of
warning time corresponds to an indication after seizure onscalp EEG.
set. Starredx ) values indicate that no condition change was  Our approach differs markedly from earlier work. First,
detected by this measure. Analysis of normal EEG shows nprevious studies>3>26used multichannel data from subdural
positive indication of change. We assess these results as fand depth electrodes to avoid low-frequerieyg., eyeblink
lows. The phase space measures provide the earliest seizwadifacts. Instead, we use one channel of scalp EEG data that
forewarning in 11, 10, 14, and 13 datasetslfol_., x2, and  allows for noninvasive, ambulatory, long-term, nonclinical
Xﬁ, respectively. Moreover, the phase-space measures proionitoring. Second, we remove the low-frequency artifacts
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from scalp EEG with a novel zero-phase quadratic filter.ture work will involve: (i) statistical evaluation of false posi-
Third, prior investigatiors®3>*forewarn of temporal lobe tives and negatives in epileptic patients, and of false posi-
epilepsy via changes in conventional nonlinear measures. liives in normal patients(ii) clinical monitoring of each
particular, other groups use the correlation inte§fatprre-  patient to determine optimal phase-space reconstruction pa-
lation dimension, and largest Lyapunov exporérEarlier  rameters, which subsequently would be fixed for ambulatory
we determined no consistent trends in such conventionahonitoring, (i) the specific nonlinear featui® for seizure
nonlinear measures for various seizure tyfeastead, we forewarning in the EEG, andiv) the response of our ap-
focus on phase-space dissimilarity measures without regangroach to psychiatric states, such as hysterical seizures.

to seizure type. Fourth, our studies demonstrate methodology

robustness over a variety of clinical conditions: digital and
analog EEG from several clinical sites; data sampling at 20
and 512 Hz; raw EEG data precision between 10—12 bits; We presented model-independent indicators to detect
presence of substantial noise in the raw EEG, as well asondition changédissimilarity) in nonlinear time series. The
periods of constant signal; and use of a fixed channelphase-space indicators of condition change measure the dif-
namely, 13, in the bipolar montage, and use of a variety oference between these density functions for a basecase and a
clinically interesting channels in the 10/20 montage. The rotestcase, ag? statistics and.; distance. Thus, these indica-
bustness of our approach suggests that this methodolodyrs integratdand magnify the differences between the pro-
could allow convenient electrode placement by a patient in @ess dynamics, and avoid the inner cancellation effects due
nonclinical setting and be used as a complementary quantte averaging over many orbiteas one does, for instance,
tative method in conjunction with clinical assessment. Futurevhen calculating the correlation dimension and Kolmogorov
use of this approach as a stand-alone method for epilepssntropy. Changes in the Bondarenko attractor are clearly
forewarning will require analysis of several seizures for eachdetected by these phase-space measures and by Kolmogorov
patient, and detailed determination of detection criteria. Fuentropy, asc increases from 5 to 18-ig. 1). On the other

|. DISCUSSION
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