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Timely detection of dynamical change in scalp EEG signals
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We present a robust, model-independent technique for quantifying changes in the dynamics
underlying nonlinear time-serial data. After constructing discrete density distributions of
phase-space points on the attractor for time-windowed data sets, we measure the dissimilarity
between density distributions viaL1-distance andx2 statistics. The discriminating power of the new
measures is first tested on data generated by the Bondarenko ‘‘synthetic brain’’ model. We also
compare traditional nonlinear measures and the new dissimilarity measures to detect dynamical
change in scalp EEG data. The results demonstrate a clear superiority of the new measures in
comparison to traditional nonlinear measures as robust and timely discriminators of changing
dynamics. ©2000 American Institute of Physics.@S1054-1500~00!00504-8#
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One of the most important problems encountered in non-
linear time-series analysis is the appropriate character-
ization of changes in the system’s dynamics. This prob-
lem is particularly vexing in physiological systems, which
are more often than not: complex, nonlinear, nonstation-
ary, and affected by noise. It is generally accepted that, in
relation to epileptic phenomena, the brain behaves like a
reasonably low-dimensional dynamical system whose dy
namics may vary between „quasi-…periodic and com-
pletely irregular „chaotic…. Thus, to a certain extent, glo-
bal aspects of brain dynamics may be legitimately
quantified by traditional nonlinear descriptors such as
Lyapunov exponents, Kolmogorov entropy, and correla-
tion dimension. While these descriptors are adequate for
discriminating between clear-cut regular and chaotic dy-
namics, they are not sufficiently sensitive to distinguish
between slightly different chaotic regimes, especially
when data are limited andÕor noisy. Most brain dynamics
prior to, during, and following an epileptic seizure fall
within the latter regime. Therefore, robust and timely
forewarning of epileptic seizures has remained an out-
standing medical challenge, especially for nonhospital-
ized patients. To address this problem, we introduce four
new measures of dissimilarity that are much more sensi-
tive than the traditional nonlinear measures. Following
standard techniques, our method converts time-serial
data to a geometric representation, that describes the dy-
namics of the underlying nonlinear system, namely, the
brain, on the corresponding attractor in the phase space.
The frequency and sequence of visitation of various
points of the attractor are described by a distribution
function „DF…, which does not change if the dynamics
remain unchanged. If the dynamics change, the attractor
and the DF will change as well. To compare a test cas
DF to the base case DF, we define various distances b
tween the DFs. A significant distance signifies that the
system has departed from the base case and can be inte
8641054-1500/2000/10(4)/864/12/$17.00
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preted as a forewarning of an impending unusual event,
possibly a seizure. Our method combines several origina
advances to achieve sensitivity which is at least two or
ders of magnitude larger than that obtained to date by
competing methods. First, before constructing the phase
space distribution, we remove confounding artifacts, such
as eye-blinks, with a new zero-phase quadratic filter. Ar-
tifact removal allows detection of dynamical charge from
single-channel, scalp„as opposed to multichannel, subdu-
ral … EEG, thereby enabling noninvasive, ambulatory,
long-term, nonclinical monitoring. Second, we use differ-
ential measures of dissimilarity which preserve a much
higher content of dynamical information than the tradi-
tional measures that average out dynamical changes by
integration of large amounts of data. Third, our tech-
nique applies to various seizure types as opposed t
present approaches that focus on temporal lobe epilepsy
only. Finally, our technique has provided robust fore-
warning of seizures for a variety of clinical data: digital
and analog from various sites; 200 Hz and 512 Hz sam
pling; raw data precision between 10 and 12 bits; pres-
ence of substantial noise; and use of a variety of channel
in the 10Õ20 montage, as well as a single channel„13… in
the bipolar montage.

I. INTRODUCTION

Physiological systems in either normal or patholog
conditions display a very rich variety of dynamical beha
iors. These behaviors manifest themselves in signals that
be interpreted at various levels, namely, clinical, physiolo
cal, chemical, physical, etc. In the last two decades, since
advent of chaotic dynamics on the scientific stage, there
been strong re-energized interest in reading and interpre
physiological data within a physical framework. The d
namical approach is motivated by several features that
© 2000 American Institute of Physics

IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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shared by physiological and complex physical syste
namely, multiple time scales, quasiperiodicity, chaos, a
self-organization. Typically, these systems:~i! comprise
many components;~ii ! have hierarchical structure;~iii ! are
driven by competing forces; and~iv! interact strongly with
noisy and/or nonstationary environments. It is therefore r
sonable to assume that, under certain circumstances, on
use the same framework to analyze and interpret physica
well as physiological time series; this approach wou
complement traditional medical diagnostics, warning, p
vention, and cure, with more precisely quantified asse
ments.

Quantitative analysis of physiologic time series has b
a difficult and frustrating problem. The most important issu
include:

~i! Lack of proper~physical! modeling for physiological
phenomena. As a result, signals have to be considere
generated by a black box whose internal mechanism is e
poorly understood, or not understood at all.

~ii ! Signals are usually nonstationary, i.e., statisti
properties of the signal may change significantly over
observation period. Usually this change is not knowna pri-
ori and not explicitly advertised.

~iii ! Usually, physiological time series are nonlinear, b
lying the nonlinear structure of various organ dynamics a
their complex, intricate interconnection, rich in feedbac
and hysteresis.

~iv! Physiological systems rarely function at steady sta
On the contrary, living processes typically occur far fro
equilibrium, and use continuous feedback and control to
just to changing conditions.

One of the most important problems encountered in n
linear time-series analysis is the appropriate characteriza
of changes in the system’s dynamics. As mentioned bef
these changes may have various origins, namely, nonsta
arity, nonlinearity, and nonequilibrium. The presence of a
one of these factors in the dynamical equation freque
introduces erratic fluctuations, patchiness, lack of obvi
structure, or other irregularities with a multiplicity of widel
disparate length- and time-scales. Often times, these irr
larities have been neglected as noise without much struc
and meaning. However, recent advances in chaotic dyna
facilitate the interpretation of these intermediate and sm
scale details as structure with significant information ab
the underlying dynamics. Accounting for this structu
would enable a deeper understanding of basic dynamical
tures of the heart, brain, and lungs, and result in more e
cient assessment, prediction, prevention, control, and tr
ment.

The aim of this paper is to describe a new method
detecting dynamical change in scalp EEG signals as an
ditional quantitative means to complement timely clinic
forewarning of a possible epileptic seizure. Epilepsy affli
many millions in the U.S. alone. Epilepsy can be effective
treated and many patients are indeed under constant me
tion. However, constant medication frequently has sev
side effects. Moreover, between 10% and 30% of the ca
cannot be controlled by medication. In addition, some
treme seizures are accompanied by heart failure or breat
Downloaded 12 Jan 2001  to 134.167.9.11.  Redistribution subject to A
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interruption that require immediate medical intervention. O
the other hand, many seizures are not life threatening or e
serious medical events; they are simply a social nuisance
embarrassment. Consequently, a robust, reliable, and u
trusive seizure warning systemwould provide a new treat-
ment paradigm whereby patients would be constantly mo
tored rather than medicated. When preseizure activity
detected, the patient can be forewarned to take timely p
ventive steps such as interrupting one’s activity and ly
down in a quiet place, taking medicine, requesting em
gency responders, or contacting one’s physician.

Several related problems have been recently pursue
both the medical and scientific community. We menti
among others:~i! modeling and analysis of the brain as
dynamical system,~ii ! chaotic analysis of the EEG data,1,2

~iii ! seizure onset prediction,1,3 and~iv! seizure mitigation by
chaos anticontrol.4 Similar problems have been studied f
the heart in connection with ECG data, heart attack prev
tion, and control of fibrillation, and, more recently, for th
lungs.

Our approach to the warning problem is purely pra
matic. We set aside deep and difficult questions about
nature of the brain and brain dynamics or the accurate
scription thereof. Indeed, current literature provides evide
both for5–7 and against8–11 the description of the brain as
low-dimensional dynamical system. We think that the jury
still out on this issue, and will be for some time to com
Consequently, here weassumethat the brain behaves like
reasonably low dimensional dynamical system and, the
fore, global aspects of the brain dynamics can be con
niently characterized by nonlinear descriptors such
Lyapunov exponents, Kolmogorov entropy, correlation
mension, etc.6

Moreover, we make no attempt to answer questio
about nonstationarity or nonequilibrium per se. Indeed, s
tistical tests for stationarity produce a binary result, name
they indicate whether or not a change occurred but prov
no information about the extent of departure from one st
to another. Stationarity tests also have limited value for
herently nonstationary processes that undergo frequen
continual changes in dynamics~e.g., physiological data, like
EEG!. For such nonstationary processes, a measure of
similarity that quantifies the ‘‘distance’’ between attracto
turns out to be more useful.12,13 Straightforward methods
exist14–16for discriminating between regular and chaotic m
tion, or for detecting the transition between these regim
However, distinguishing different chaotic regimes can
very difficult, especially when data are limited and noisy. W
describe four sensitive measures of dissimilarity, apply
them first to model data and then to scalp EEG data. O
method is useful for~1! discriminating between different an
possibly close chaotic regimes, and~2! monitoring the extent
of departure of a system from a given dynamical state.

The paper is organized as follows: Sec. II discus
some traditional nonlinear measures for time series analy
Section III presents our indicators of dynamical change
comparison of the phase-space distribution functions via
similarity measures. Section IV describes the discriminat
power of these measures on a ‘‘synthetic brain’’ model p
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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posed by Bodnarenko, in which changes are easily monito
and controlled. Finally, Sec. V explains the use of these m
sures on experimental EEG data to detect the transition
tween nonseizure and epileptic brain activity. While the d
similarity measures reflect the inherent noise in the E
data, detection of preseizure condition change is clearly
perior to that realized using traditional nonlinear measure

II. NONLINEAR MEASURES FROM TIME SERIES

Our analysis begins with a process-indicative scalar
nal, x, from a dynamical system whose dimensionality a
structure are usually unknown. This signal is sampled
equal time intervals,t, starting at time,t0 , yielding a se-
quence of N points, xi5x(t01 i t). Dynamical process
reconstruction14 uses d-dimensional time-delay vectors
y( i )5@xi ,xi 1l , . . . ,xi 1(d21)l#, for a system withd active
variables and time lag,l. The choice of lag and embeddin
dimension,d, determine how well the phase space reco
struction unfolds the dynamics for a finite amount of no
data. Takens found that, for ad-dimensional system, 2d11
dimensions generally results in a smooth, nonintersec
reconstruction.17 Saueret al.18 showed that, under ideal con
ditions, the first integer greater than the correlation dim
sion is often sufficient to reconstruct the system dynam
This last statement has been confirmed by computing
embedding dimension via the false nearest-neighb
method.19–21 However, real data have finite length and a
affected by noise, implying that too high an embedding
mension may result in overfitting. We further note that d
ferent observables of a system contain unequal amoun
dynamical information,22 implying that phase space reco
struction could be easier from one variable, but more di
cult ~or even impossible! from another. Our subsequen
analysis is mindful of the balance between these caveats
the constraints imposed by the limited amount of noisy da

Based on the phase space reconstruction, various no
ear measures have been defined to characterize proces
namics. We choose three of these nonlinear measu
against which we compare the new metrics. In particular,
use~i! the first minimum in the mutual information functio
as a measure of decorrelation time,~ii ! the correlation dimen-
sion as a measure of dynamic complexity, and~iii ! the Kol-
mogorov entropy as a measure of predictability. We brie
describe these three measures in the following paragrap

~i! The mutual information function~MIF! is a nonlinear
version of the~linear! autocorrelation and cross-correlatio
functions, and was originally developed by Shannon a
Weaver23 with subsequent application to time series analy
by Fraser and Swinney.24 The MIF measures the averag
information ~in bits! that can be inferred from one measur
ment about a second measurement, and is a function o
time delay between the measurements. Univariate MIF m
sures predictability within the same data stream at differ
times. Bivariate MIF measures predictability of one da
channel, based on measurements in a second signal at d
ent times. For the present analysis, we use the first minim
in the univariate MIF,M1 , to indicate the average time la
Downloaded 12 Jan 2001  to 134.167.9.11.  Redistribution subject to A
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that makesxi independent ofxj . The MIF, I (q,r ), and sys-
tem entropy,H, are defined by

I ~q,r !5I ~r ,q!5H~q!1H~r !2H~q,r !, ~1!

H~q!52(
i

P~qi !log@P~qi !#, ~2!

H~q,r !52(
i , j

P~qi ,r j !log@P~qi ,r j !#. ~3!

For a window ofw points, we denote one set of data me
surements byq1 ,q2 , . . . ,qw , with associated occurrenc
probabilitiesP(q1),P(q2), . . . ,P(qw). R denotes a second
set of data measurements,r 1 ,r 2 , . . . ,r w , with a time delay
relative to theqi values, having associated occurrence pro
abilities P(r 1),P(r 2), . . . ,P(r w). The function P(qi ,r j )
denotes the joint probability of both states occurring sim
taneously.H and I are expressed in units of bits if the loga
rithm is taken in base two.

~ii ! The maximum-likelihood correlation dimension,D,
is defined by25,26

D5H ~21/M !(
i , j

ln@~d i j /d02dn /d0!/~12dn /d0!#J 21

,

~4!

whereM is the number of randomly sampled point pairs;d i j

is the maximum-norm distance between the~randomly cho-
sen! i– j point pairs, as defined in Eq.~6! ~below!. The dis-
tance~scale length! dn is associated with noise as measur
from the time serial data. Note that the distances are norm
ized with respect to a nominal scale lengthd0 , which is
chosen as a balance between sensitivity to local dynam
~typically atd0<5a) and avoidance of excessive noise~typi-
cally at d0>a). Here, the symbola denotes the absolut
average deviation as a robust indicator of variability26 in the
time serial data,

a5~1/w!(
i 51

w

uxi2xI u, ~5!

wherex is the mean ofxi over a window ofw points. The
distancesd i j are defined by

d i j 5 max
0<k<m21

uxi 1k2xj 1ku, ~6!

wherem is the average number of points per cycle.
~iii ! The Kolmogorov entropy,K, measures the rate o

information loss per unit time, or~alternatively! the degree
of predictability. A positive, finite entropy generally is con
sidered to be a clear demonstration that the time series
its underlying dynamics are chaotic. A large entropy in
cates a stochastic, nondeterministic~totally unpredictable!
phenomenon. One estimates the entropy from the ave
divergence time for pairs of initially-close orbits. More pr
cisely, the entropy is obtained from the average time for t
points on an attractor to go from an initial separationd
,d0), to a separation of more than a specific distanced
.d0). The maximum-likelihood entropy is calculated fro
the method by Schouten, Takens, and van den Bleek,27

K52 f s log~121/b!, ~7!
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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b5~1/M !(
i 51

M

bi , ~8!

with bi as the number of timesteps for two points, initial
within d,d0 , to diverge tod.d0 . The symbolf s denotes
the data sampling rate.

Entropy and correlation dimension usually are defined
the limit of zero scale length. However, all real data ha
noise and even noiseless model data is limited by the fi
precision of computer arithmetic. Thus, we choose a fin
scale length that is slightly larger than the noise (d052a), at
which to report the values ofK and D, corresponding to
finite-scale dynamic structure. Consequently, the values oK
andD that we report do not capture the full dynamical co
plexity and have smaller values than expected for the z
scale-length limit (d0→0).

III. DEFINITION AND USE OF THE NEW MEASURES

The traditional nonlinear measures described in the p
vious section characterize global features of the nonlin
dynamics and distinguish sufficiently clearly between, s
regular and chaotic dynamics. However they do not ea
reveal slight dissimilarities between dynamical states. T
same is true for other global indicators, such as fractal
mension, Lyapunov exponents, etc. This lack of discrimi
tion occurs because the traditional measures are base
averaged or integrated system properties of the attrac
which provide a global picture of long-term dynamical b
havior. Traditional nonlinear measures ultimately provi
only one or a few scalar measures as summary descripto
large data segments.

Greater discrimination is possible by more detail
analysis of the reconstructed dynamics. The natural~or in-
variant! measure on the attractor provides a more refin
representation of the reconstruction, describing the visita
frequency of the system dynamics over the phase space
obtain a useful discrete representation of the invariant m
sure from time serial data, we proceed as follows. We fi
represent each signal value,xi , as a symbolized form,si ,
that is, one ofS different integers, 0,1,. . . ,S21,

0<si5INT@S~xi2xmin!/~xmax2xmin!#<S21. ~9!

Here, the function~INT! converts a decimal number t
the closest lower integer, andxmin andxmax denote the mini-
mum and maximum values ofxi , respectively, over the bas
case~reference data!. We previously used31 the minimum
and maximum values over both the basecase and tes
~data to be tested for departure from the basecase!. However,
in real- or near-real-time analyses, only basecase extrem
actually known. We require thatsi(xi5xmax)5S21 in order
to maintain exactlySdistinct symbols. Thus, the phase spa
is partitioned intoSd hypercubes or bins. By counting th
number of phase-space points occurring in each bin, we
tain the distribution function as a discretized density on
attractor. We denote the population of theith bin of the dis-
tribution function,Qi , for the base case, andRi for a test
case, respectively. For infinitely precise data, this repres
tation has been used in Ref. 28. The choice of parametersS,
Downloaded 12 Jan 2001  to 134.167.9.11.  Redistribution subject to A
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N, andd) depends on the specific data under considerat
In the preliminary phase of the analysis, we iteratively var
each parameter with the others fixed, to obtain optimum s
sitivity of the measures to changes in system dynamics
each class of data evaluated. After realizing optimal sens
ity, the values of the parameters were kept fixed. A syste
atic method to determine optimal values for these parame
is the subject of future work.

We use an embedding window,M15(d21)l, based on
the first minimum in the mutual information function,M1 .24

This choice of time delay provides maximal information f
the reconstruction of the phase space dynamics. Then, w
l5INT@0.51M1 /(d21)# to obtain an integer value for th
reconstruction lag whenM1 is not evenly divisible byd
21. The reconstruction requires thatl>1, thus constraining
the largest value of dimensionality tod<2M111 from the
above formula.

We next compare the distribution function of a testca
process state to that of a basecase. Dikset al.29 measured
differences between delay vector distributions by the squ
of the distance between two distribution function
Schreiber12 measures dissimilarity via the Euclidean distan
between phase-space points of the attractor. This mea
only accounts for the geometrical shape and location of
attractor. Manuca and Savit34 measure dissimilarity via ratios
of the correlation integral over the DF. This is essentially t
correlation dimension discussed in the previous sect
Moreover, these papers discuss dissimilarity measures f
the perspective of nonstationarity, while our focus is on co
dition change, as explained in the Introduction. Thus, h
we measure the difference betweenQi with Ri by the x2

statistics andL1 distance,

x25(
i

~Qi2Ri !
2/~Qi1Ri !, ~10!

L5(
i

uQi2Ri u, ~11!

where the summations in both equations run over all of
populated cells in the phase space. The choice of these m
sures is dictated by the following considerations. Thex2

statistic is one of the most powerful, robust, and widely-us
statistical tests to measure discrepancies between obse
and expected frequencies. TheL1 distance is the natural met
ric for distribution functions since it is directly related to th
total invariant measure on the attractor. We note that th
measures account for changes in the geometry of the at
tor and for changes in the DF as well. To apply these m
sures properly we scale the total population of the unkno
distribution function~sum over all the domain populations i
Ri) to be the same as the total population of the basec
The sum in the denominator of Eq.~10! is based on a test fo
equality of two multinomial distributions.30

The previous analysis can be extended in a natural m
ner that is inherently compatible with the underlying dyna
ics. By connecting successive phase space points as indic
by the dynamics,y( i )→y( i 11), one obtains a discrete rep
resentation of the process flow.15 We thus form a
2d-dimensional vector,Y( i )5@y( i ),y( i 11)#, in the con-
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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nected phase space. As before,Q andR denote the distribu-
tion functions for the basecase and testcase, respective
the connected phase space. We define the measure o
similarity between these two connected phase space state
before, via theL1-distance andx2 statistic,31

xc
25(

i j
~Qi j 2Ri j !

2/~Qi j 1Ri j !, ~12!

Lc5(
i j

uQi j 2Ri j u. ~13!

The subscriptc indicates the connected distribution functio
measure. We note that the valuel51 results ind21 com-
ponents ofy( i 11) being redundant with those ofy( i ), but
we allow this redundancy to accommodate other data suc
discrete points from two dimensional maps. Using pairw
connectivity between successived-dimensional states, thi
approach captures even more dynamical information. T
additional information results in a higher discriminatin
power of the connected measures as compared with
nonconnected counterparts. Indeed, we can prove that
measures defined in Eqs.~10!–~13! satisfy the following in-
equalities:

x2<L, ~14!

xc
2<Lc , ~15!

L<Lc , ~16!

x2<xc
2 . ~17!

To prove Eq.~14!, we note that for any non-negative num
bers,Qi andRi , we have (Qi1Ri)>uQi2Ri u. Dividing the
equality (Qi2Ri)

25uQi2Ri u2 by the preceding inequality
yields (Qi2Ri)

2/(Qi1Ri)<uQi2Ri u, which completes the
Downloaded 12 Jan 2001  to 134.167.9.11.  Redistribution subject to A
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proof when summed over all values ofi. One can prove Eq
~15! by the same argument. The proof for Eq.~16! follows
directly from the definition of theL1-norm,

L5(
i

uQi2Ri u5(
i

U(
j

~Qi j 2Ri j !U
<(

i
(

j
uQi j 2Ri j u5Lc . ~18!

Proving Eq.~17! amounts to showing

(
i

@( j~Qi j 2Ri j !#
2

( j~Qi j 1Ri j !
<(

i
(

j

~Qi j 2Ri j !
2

Qi j 1Ri j
, ~19!

whereQi j ,Ri j >0, not allQi j 50 and not allRi j 50. Inequal-
ity ~19! is proven if it holds independently for each term
the i-sum.

By noting that (A2B)25(A1B)224AB, we can re-
write the inequality between theith terms as

(
j

S Qi j 1Ri j 2
4Qi j Ri j

Qi j 1Ri j
D2(

j
~Qi j 1Ri j !

14
( jQi j ( jRi j

( jQi j 1( jRi j

54S ( j 51
n Qi j ( j 5 i

n Ri j

( j 5 i
n Qi j 1( j 5 i

n Ri j
2(

j 5 i

n
Qi j Ri j

Qi j 1Ri j
D>0. ~20!

We shall prove inequality~20! by complete induction.
We denote the expression in the last brackets byEn

[ @NM/(N1M )# 5S, where N5( j 5 i
n Qi j ,M5( j 5 i

n Ri j ,
andS5( j 5 i

n @Qi j Ri j /(Qi j 1Ri j )#.
For n51,E150. Suppose now thatEn>0 for somen

>2 and evaluate
En115
~N1Qn11!~M1Rn11!

N1Qn111M1Rn11
2S2

Qn11Rn11

Qn111Rn11

5
MN1NRn111MQn111Qn11Rn112NS2Qn11S2MS2Rn11S

N1Qn111M1Rn11
2

Qn11Rn11

Qn111Rn11

>
NRn111MQn111Qn11Rn112Qn11S2Rn11S

N1Qn111M1Rn11
2

Qn11Rn11

Qn111Rn11
, ~21!
-

hat,
con-
hase

ace
dis-
ase
where we have used thatMN2NS2MS>0 sinceEn>0.
After some algebra and taking into account that~i! the

denominators are positive and~ii ! 2S>2 @MN/(M1N)#
we transform Eq.~22! into

MQn11
2 2SQn11

2 22Qn11Rn11S1NRn11
2 2SRn11

2

>MQn11
2 2

MN

M1N
Qn11

2 22Qn11Rn11

MN

M1N

1NRn11
2 2

MN

M1N
Rn11

2 .
By multiplying with M1N and canceling terms we fi
nally obtain (MQn112NRn11)2 which is obviously non-
negative.

Equation~17! follows without difficulty from a similar
complete induction argument. These inequalities show t
as expected, the measures of condition change for the
nected phase space are stronger than those for the p
space representation.

In the subsequent application of the new phase sp
measures to discriminate condition change, we note that
tribution function values depend on one another due to ph
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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869Chaos, Vol. 10, No. 4, 2000 Change in scalp EEG signals
space construction from time delay vectors with dynami
structure.29 The resulting statistical bias is avoidable by a
eraging contributions to Eqs.~10! and ~12! over values of
y( j ) or Y( j ) which satisfy u i 2 j u,L,29 where L is some
largest typical correlation scale length in the time series.
tested the bias in typical data by sampling everyL-th con-
nected phase space point for 4<L<23, resulting inL dif-
ferent samples for the base case (Qi) and for each cutse
(Ri). We then averaged the sampledx2 values over theL2

different combinations of distribution functions for the bas
case and testcase cutsets. As expected, a decrease p
tional to 1/L occurs in the sampledx2 values, because th
number of data points contributing tox2 decreases in the
same proportion. The trend over time in sampledx2 values
remains the same as inx2 values without sampling, showin
that no unexpected bias is present. Thus, we use unsam
x2 values for the remainder of this work as arelative mea-
sure, rather than as an unbiased statistic for acceptin
rejecting a null statistical hypothesis.

IV. APPLICATION TO THE BONDARENKO MODEL

We assess the discriminating power of the new meas
by testing them on the Bondarenko ‘‘synthetic brain
model,32 which is described by a coupled set of time-delay
ordinary differential equations,

u̇i~ t !52ui~ t !1(
i 5 j

M

ai j f ~uj~ t2t j !!,

~22!
i , j 51,2, . . . ,M .

This model is the generalization of the Hopfield model
the electronic circuit realization of a neural network by ad
ing a time delayt j . Hereui(t) is the output signal of theith
neuron. The matrixai j denotes the coupling coefficients b
tween the neurons, with randomly chosen values,22<ai j

<2. The indicesi and j run from 1 toM510 ~ten neurons!.
The time delay of thejth neuron output,t j , is constant and
equal to 10. The nonlinear response function,f (x)
5c tanh(x), simulates nonlinear neural response to sign
from neighboring neurons. The coefficientc is used in order
to change the values of the coupling coefficients between
neuronsai j simultaneously.

As mentioned before, some traditional nonlinear m
sures are good indicators of a bifurcation or transition
chaos. However, transitions between two chaotic regimes
not readily detected by these same measures, especiall
relatively small changes in the parameter that underlies
transition. Therefore, the present work concentrates on m
suring dissimilarity within a region where the Bondaren
system is known to behave chaotically,32 5<c<18. We in-
tegrate the model using a standard fourth-order Runge–K
method33 with a time step ofh50.3. We allow a time of 4
3108 h for the solution to achieve stationarity after initiatin
the integration with random impulses,uj (t50)5r j with r j

having uniformly random values,22<r j<2. We calculated
100 000 data values ofui at fixed time intervals ofDt560
for each value ofc. We obtained the~connected! phase space
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measures by partitioning each 100 000-point Bondare
dataset into four nonoverlapping subsets of 25 000 po
each, for comparison to each of the 25 000-point subset
basecase atc55. We compared each of the four testca
subsets to each of the four basecase subsets, yieldin
values for each of the four measures of dissimilarity, fro
which we obtain a mean and the standard deviation of
mean. We use one of the ten neuron signals for dissimila
detection. For example, Fig. 1 shows various nonlinear m
sures vsc, by analyzing only the one neuron signal of th
Bondarenko system. We obtain similar results for other n
ron signals. The correlation dimension@Fig. 1~a!# varies er-
ratically between 3.5 and 8.5. The Kolmogorov entropy@Fig.
1~b!# rises almost monotonically from 0.025 to 0.16. Figu
1~c! shows the location of the first minimum in the mutu
information function,M1 , with erratic variation asc in-
creases. In sharp contrast, the~connected! phase space mea
sures @Figs. 1~d! and 1~e!# increase almost monotonicall
from zero to more than 83104 asc rises from 5 to 18. The
values ofL andx2 essentially coincide over the whole rang
because the measures are dominated by phase space bin
are populated only for the basecasePi.0 for Qi50 and
only the testcasePi.0 for Qi50, for which the two mea-
sures become analytically equivalent. The curves in F
1~d! and 1~e! correspond to the average measure of dissi
larity, while the error bars indicate the standard deviation
the means. We show error bars for the nonconnected ph
space metrics only, because error bars for the conne
phase measures are comparable. As expected from
~14!–~17!, the connected phase-space measures are stro
than their nonconnected counterparts.

V. APPLICATION TO EEG DATA

We turn next to analysis of brain wave data, which ha
been described in terms of nonlinear dynamics.6 Nonlinear
EEG measures are not stationary,34 displaying instead
marked transitions between normal and epileptic states. E
data display low-dimensional features6,35 with at least one
positive Lyapunov exponent,6,36 and hence positive Kolmog
orov entropy. EEG data also display clear phase sp
structure,6,36 on which our analysis relies for measuring co
dition change in the Bondarenko model~see previous sec
tion! and the Lorenz attractor.31 We find that phase spac
measures are useful for nonlinear detection of condit
changes in brain wave data.31 We emphasize that our wor
relies on scalp EEG which measures the synchrony in co
cal neurons on an area of roughly 6 cm2. Our analysis as-
sumes that both the traditional and the new measures
sensitive to changes in this synchrony.

Nine data sets with 16 channels of analog scalp data
the bipolar montage were obtained from archival VH
tapes.37 We used only channel 13, closest to the patien
right eye. We note that channel 13 in the bipolar montag
an old designation for the difference between channels
and F4 in the 10/20 montage. We used channel 13 in in
analyses@31# to demonstrate the robustness of the zero-ph
quadratic filter for removing the eyeblink artifact~discussed
below!. We digitized this data at a sampling rate of 512 H
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 1. Nonlinear measures versusc for the Bond-
arenko system, for one neuron channel:~a! correlation
dimension,D, ~b! Kolmogorov entropy,K, ~c! location
of the first minimum in the MIF,M 1 , ~d! x2/105, and
~e! L/105. The error bars onD and K correspond to
95% confidence intervals. The phase space reconst
tion parameters areS534, d53, N550 000, andl54.
The ~connected! phase space measures are the top~bot-
tom! curves, respectively, in~d! and ~e!.
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with 12-bit precision, corresponding to integers betwe
22048 and12047. Table I summarizes these nine datas
with monitoring periods of 1380– 3115 s. Seizures begin
times ranging from 966 and 2775 s. The seizure times
Table I were indicated on the records by the attending cl
cians.

We also examined digital EEG scalp data from oth
clinical sites in the 10/20 International System of electro
placement, sampled at 200 Hz. These data have 10–12
of precision, with signal amplitudes between 0 and 30
depending on the dataset. They were collected from a n
ber of channels, varying between 23 to 32, with monitor
periods between 2217 and 20 000 s. The clinical seizu
begin at times that range between 1930 and 15 750 s.
examined only one clinically interesting channel in each
these eleven datasets, as shown in Table I. In all cases
data were obtained by physicians under their own Hum
Studies IRB approval which included informed consent
the patients.

All scalp EEG are obscured by muscular activity due
eye blinks, facial twitches, etc. These artifacts are avoida
by obtaining EEG data from depth or subdural electrod
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but such methods are invasive and nonambulatory. We
move most of the low frequency artifacts from the sca
EEG data with a novel zero-phase quadratic filter, which
unlike standard linear filters—retains the nonlinear amp
tude and phase relationships.37

This filter uses a moving window of 2n11 points of raw
EEG data,ei , with the same number of data points,n, on
either side of a central point. We fit the data to a quadra
equation of the form,F(t)5a1T21a2T1a3 , with T5t
2tc , and tc the time at the central point of the movin
window. We fit this quadratic form to the data, by minimi
ing C5S@F(t)2ei #

2, where the sum is over the 2n11
points in the moving window. The minimum inC is found
from the condition]C/]ak50, which yields three linear
equations in three unknowns. The window-averaged arti
at the central point is given by the fitted value of the cent
point, F(tc5t i)5a3 . We note that the sums over odd pow
ers ofTi are zero and that symmetric sums over even pow
of Ti ~over i from 2n to n) can be converted to sums from
1 to n, giving a window-averaged solution for the artifa
signal,
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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TABLE I. Summary of EEG data~see text for discussion!.

Dataset
No.

Number
of

channels

Time of
seizure

~seconds!

Dataset
length

~seconds!
Channel
analyzed

Sample
rate

~Hertz!
Preseizure

activity
Seizure

descriptiona

109310 16 2775 3115.3 13 512b Asleep *
109314 16 2480 2742.4 13 512b Drinking fixed gaze
119230 16 2491 2917.4 13 512b Sponge bathing tonic
119234 16 2560 2649.6 13 512b Asleep *
62723t 16 2620 3060.8 13 512b

* *
69212 16 2356 2547.8 13 512b Moving in bed subclinical
73305d 16 1245 1380 13 512b Talking *
c8492d 16 966 1603.6 13 512b Awake/in bed tonic
wm12sd 16 1041 1428.6 13 512b Hangs up phone tonic
szprec 32 1930 2217 F7 200 *
szpr00 23 5236 5401 Fp2 200 * G, TC
szpr03 32 1932 2217 T4 200 * 2’ G
szpr04 23 3794 3963 T4 200 * G
szpr05 23 4888 6000.2 T4 200 * G
emu002 27 4320 15 066 F4 200 * LH onset,

dorsal convexity
outside the
temporal lobe

emu003 27 13 200 16 228 C3 200 * A, LF focus
emu004 27 15 750 18 423 C4 200 * focal with partial

seizures arising from
R anterior mesial
temporal

emu14 27 4080 20 222.2 F4 200 * symptomatic G
emu18 27 4200 18 000.2 T3 200 * focal arising from

L anterior to mid-
temporal area

emu26 26 13.987 16 224 Fp1 200 * focal arising from
R anterior
temporal area

a2’ G 5 secondarily generalizing seizure; L5left; A5atypical; R5right; F5frontal; T/C5tonic/clonic seizure; G5generalized seizure; H5hemisphere.
bThe 512 Hz datasets were acquired before 1995, and subsequent personnel changes make the information for these entries unavailable. Preseizuvity for
the other datasets was not provided.
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F~ t5tc!5@3~3n213n21!~Sei 1c!215~S i 2ei 1c!#/

~4n214n23!~2n11!.

The sums in this last equation are overi from 2n to n,
with sums over even powers ofi explicitly evaluated with
standard formulas. The effort to evaluate this equation ca
reduced further by computing the sums initially from t
above equation withc5n11, and then using recursion
thereafter. Application of this filter to theN-point set of raw
EEG data,ei , yields N22n points of artifact data,f i , that
contains the low frequency artifact signal. The resid
~artifact-filtered! signal,gi5ei2 f i , is free of low-frequency
activity.

The filter window width corresponds to eye blink acti
ity at 2 Hz, for whichn5128 in the nine datasets with a 51
Hz sampling rate, andn550 in the eleven datasets with
200 Hz sampling rate. All subsequent EEG analysis uses
artifact-filtered data.

We chooseN522 000 data points (43 s! for each cutset
of the nine datasets, sampled at 512 Hz. This value bala
the improvement in forewarning time discrimination
smallerN, with the statistical power to measure dissimilar
at larger N. For this same reason, we also chooseN
Downloaded 12 Jan 2001  to 134.167.9.11.  Redistribution subject to A
be
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522 000 data points (110s) for each cutset of the eleve
datasets, sampled at 200 Hz.

Our previous analysis of EEG data37,40 found correlation
dimension values ranging between 2 and 6, consistent w
values found by other groups.6,35 These results suggest
choice ofd<7 for the connected phase space reconstruct
However, we find thatd57 overfits the EEG data due t
noise, modest cutset size, and the finite precision. We it
tively varied each phase-space construction parameter
the others fixed, to obtain optimum sensitivity of the pha
space measures to EEG changes. We subsequently
formed all EEG analyses with the single best choice forS,d,
and N. In particular, we found the best phase-space rec
struction parameters using the nine 512 Hz datasets, and
fixed the parametersd53, N522 000, andS522 for all the
subsequent analysis of the other datasets. For the
datasets, sampled at 512 Hz, the value ofM1 is taken from
the first 430 s of~nonseizure! data; in the eleven dataset
sampled at 200 Hz, the value ofM1 is taken from the first
1 100 s of data.

We use the first ten nonoverlapping cutsets in each of
datasets as basecases.31 This choice is a balance between
reasonably short basecase period to capture quasistatio
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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nonseizure activity and a sufficiently long period for statis
cal significance. However, a few of these basecase cu
are very different from typical non-seizure activity, causing
severe bias in the detection of condition change. Thus,
statistically test the data for outlier cutsets as follows. Co
parisons among the ten basecase cutsets yields 4559
310/2) unique pairs, from which we obtain an average,VI ,
and sample standard deviation,s for each of the dissimilar-
ity measures,V5L, Lc , x2, and xc

2 . We calculate ax2

statistic,((Vi j 2VI )2/s2, for each of these four dissimilarity
measures. The indexj is fixed, to test thejth cutset agains
the other nine cutsets, thereby giving nine degrees of f
dom in thex2 statistic. The null statistical hypothesis allow
a random outlier in these 45 unique comparisons with
probability of <1/45, corresponding to less than one out
the 45 unique pairs. Thus, we identify an outlier cutset
having the largestx2 statistic greater than 19.38 over th
four dissimilarity measures, which corresponds to a proba
ity larger than 1/45. If this analysis does not identify a
outlier, then the previous values ofV and are used for sub
sequent renormalization, as described below. If this anal
identifies an outlier, we remove it and repeat this analysis
the remaining nine basecase cutsets. Repeated applicati
this analysis identifies any additional outliers when the la
est chi-squared statistic exceeds the below threshold, co
sponding to a random probability of greater than 2/B(B
21), as interpolated from standard statistical tables foB
21 degrees of freedom.38 Here,B is the number of nonout
lier basecase cutsets. Thus, rejection of the null hypoth
corresponds to ax2 statistic greater than 19.38, 17.24, 15.0
12.74, and 10.33, forB510, 9, 8, 7, and 6, respectively.

This approach dramatically improves the robustness
the condition change detection. If the analysis identifies fi
~or more! outliers, we would have to reject all ten baseca
as unrepresentative, and acquire a new set of ten cutse
basecases. However, the present analysis never finds
than four outliers. Subsequently, we compare the nonou
basecase cutsets to each nonoverlapping testcase cutse
obtain average values for the dissimilarity measures for e
testcase.

The disparate range and variability of the various no
linear measures are difficult to interpret, so we need a c
sistent means of comparison. Thus, we convert the nonlin
measures to a renormalized form.31 For each nonlinear mea
sure,V5D, K, M1 , L, Lc , x2, andxc

2 , we defineVi as the
value of nonlinear measure for theith cutset. As before,VI is
the mean value of that nonlinear measure over the nonou
basecases, with a corresponding sample standard devi
s, as described above. For the new measures of dissim
ity, namely L, Lc , x2, and xc

2 , Vi is averaged over the
nonoutlier cutsets. No such averaging is done forD, K, and
M1 since the calculation of these measures involves only
cutset at the time. The renormalized form is thenU(V)
5uVi2VI u/s, which measures the number of standard dev
tions that the testcase deviates from the basecase mean.
positive indication of change, we useU>Uc53.09, corre-
sponding to a false positive probability of less than 1023 in
Gaussian random data. To avoid spurious fase positives
require two or more consecutive occurrences for indicat
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of condition change; this corresponds to a joint false posit
probability of less than 1026 in Gaussian data. Figure
shows a typical example in which single excursions of
nonlinear measures above the threshold occur at 55 s
715 s. Consequently, we require two excursions ab
threshold as the criterion for condition change. Using t
‘‘twice-in-succession’’ criterion, Fig. 3 shows clear fore
warning at 1100 s without false positives. We also note t
the forewarning times in Table II are determined by usi
the full length of available data in all cases. We next u
these renormalized forms for measuring changes in EEG

Figure 2 shows the renormalized nonlinear measures
dataset #szprec. The vertical lines in these plots indicate
set of the clinical seizure at 1930 s and subsequent pos
zure period. The nonlinear measures are plotted at the ce
of the time window for each cutset. All of the measures sh
low to modest variability during the period of nonseizu
brain activity ~less than 900 s!. Figure 2~a! shows the mini-
mum,emin , and maximum,emax, in the raw EEG signal with
no clear preseizure features in the signal envelop. Other
plots@Figs. 2~b!–2~f!# show the renormalized nonlinear me
sures, with a horizontal line indicating the threshold for co
dition change detection, Uc53.09. The correlation
dimension,D @Fig. 2~b!# rises above the threshold from 125
to 1500 s, subsequently falls below the threshold, and t
rises above threshold at 1925 s through the seizure. The
mogorov entropy,K @Fig. 2~c!# provides no preseizure indi
cation, and rises aboveUc only during the seizure. The firs
minimum in the mutual information function,M1 @Fig. 2~d!#
exceedsUc from 1250 to 1500 s, then falls below the thres
old without any seizure indication. In sharp contrast to the
weak preseizure indications, the renormalized phase-sp
measures@Figs. 2~e!–2~f!# all rise above the threshold a
1155 s, rising still further near and immediately followin
the seizure.

TABLE II. Difference~s! between seizure onset and change detection~in s!.
Entries with an asterisk~* ! show no positive indication of change. For eac
dataset, bold entries denote the earliest time of change.

Dataset No. D K M 1 Lc L xc
2 x2

109310 1 099 * * 261 261 1 142 261
109314 1 921 1 406 1 835 1 878 1 921 1 921 1 921
119230 901 386 2216 471 244 471 514
119234 1 915 * * 1 915 1 915 1 915 1 915
62723t 1 374 * 244 2 233 1 675 2 233 2 233
69212 * 165 637 1 626 1 497 1 626 1 626
73305d 600 600 * 343 772 287 772
c8492d 222 321 364 193 193 193 193
wm12sd * * * 276 10 10 10

szprec 500 2160 500 610 610 610 610
szpr00 * * 1 496 726 2154 836 1 716
szpr03 2158 2158 172 502 502 502 502
szpr04 2166 * 2166 384 384 384 384
szpr05 3 568 3 348 3 568 3 678 3 568 3 678 3568
emu002 * 2190 2410 2 230 2 780 1 900 2 780
emu003 * * * 12 760 12 760 12 760 12 760
emu004 * 6 950 * 13 660 13 550 14 540 13 660
emu014 * * 2540 670 670 2210 670
emu018 290 21 630 2310 3 650 2 200 3 650 2 220
emu026 11 127 11 237 4 747 11 237 11 237 11 237 11 237
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 2. Renormalized nonlinear measures versus ti
for dataset #szprec:~a! correlation dimension,~b! Kol-
mogorov entropy,~c! first minimum in the MIF~in time
steps!, ~d! L1 measure for the connected phase spa
~solid! and phase space~dotted!, and~e! x2 measure for
the connected phase space~solid! and phase space~dot-
ted!. The ordinate values of the change metricU are in
units of standard deviations from the mean.
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Figure 3 displays the renormalized nonlinear measu
for dataset #szpr03, for which the onset of clinical seiz
occurs at 1932 s. Figure 3~a! shows the minimum,emin , and
maximum,emax, in the raw EEG signal with little preseizur
amplitude variability, except four positive spikes betwe
450 and 750 s.D @Fig. 3~b!# and K @Fig. 3~c!# give essen-
tially no preseizure warning, exceeding the threshold
condition change immediately prior to and during the s
zure.M1 exceedsUc at 1375 s and at 1595– 1815 s, but do
not indicate the seizure. The connected phase-space
sures~solid lines! in Figs. 3~e!–3~f! show a single excursion
above threshold at 715 s. Subsequently, all of the ph
space measures rise and stay aboveUc , beginning at 1265 s
through seizure.

Table II summarizes the forewarning times for ea
measure over all 20 EEG datasets. A negative value of f
warning time corresponds to an indication after seizure
set. Starred~* ! values indicate that no condition change w
detected by this measure. Analysis of normal EEG shows
positive indication of change. We assess these results as
lows. The phase space measures provide the earliest se
forewarning in 11, 10, 14, and 13 datasets forL, Lc , x2, and
xc

2 , respectively. Moreover, the phase-space measures
Downloaded 12 Jan 2001  to 134.167.9.11.  Redistribution subject to A
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vide preseizure indications in all 20 cases. In sharp contr
the tradition nonlinear measures only give the earliest fo
warning of a seizure in 1, 1, and 3 instances forK, M1 , and
D, respectively. These same traditional measures provide
forewarning of a seizure in 7, 8, and 6 cases, respectiv
The sum of the earliest-forewarning times exceeds twe
because more than one measure can simultaneously d
condition change. A topic of future research is improvem
of the method to provide the earliest possible indication
condition change. We also note that the forewarning time~10
s! for dataset #wm12sd is too short to be clinically useful.
addition, the forewarnings of more than 1 h~datasets #
emu003, emu004, emu026! are too long to be clinically use
ful. We conclude that the phase space measures are m
superior to the conventional nonlinear measures as pre
zure indicators of condition change for a single channel
scalp EEG.

Our approach differs markedly from earlier work. Firs
previous studies2,3,35,36used multichannel data from subdur
and depth electrodes to avoid low-frequency~e.g., eyeblink!
artifacts. Instead, we use one channel of scalp EEG data
allows for noninvasive, ambulatory, long-term, nonclinic
monitoring. Second, we remove the low-frequency artifa
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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FIG. 3. Renormalized nonlinear measures versus ti
for dataset #szpr03:~a! correlation dimension,~b! Kol-
mogorov entropy,~c! first minimum in the MIF,~d! L1

measure for the connected phase space~solid! and
phase space~dotted!, and ~e! x2 measure for the con-
nected phase space~solid! and phase space~dotted!.
The ordinate values of the change metricU are in units
of standard deviations from the mean.
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from scalp EEG with a novel zero-phase quadratic filt
Third, prior investigations2,3,35,36forewarn of temporal lobe
epilepsy via changes in conventional nonlinear measures
particular, other groups use the correlation integral,2,3 corre-
lation dimension, and largest Lyapunov exponent.36 Earlier
we determined no consistent trends in such conventio
nonlinear measures for various seizure types.31 Instead, we
focus on phase-space dissimilarity measures without re
to seizure type. Fourth, our studies demonstrate methodo
robustness over a variety of clinical conditions: digital a
analog EEG from several clinical sites; data sampling at
and 512 Hz; raw EEG data precision between 10– 12 b
presence of substantial noise in the raw EEG, as wel
periods of constant signal; and use of a fixed chan
namely, 13, in the bipolar montage, and use of a variety
clinically interesting channels in the 10/20 montage. The
bustness of our approach suggests that this methodo
could allow convenient electrode placement by a patient
nonclinical setting and be used as a complementary qua
tative method in conjunction with clinical assessment. Fut
use of this approach as a stand-alone method for epile
forewarning will require analysis of several seizures for ea
patient, and detailed determination of detection criteria.
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ture work will involve: ~i! statistical evaluation of false pos
tives and negatives in epileptic patients, and of false po
tives in normal patients,~ii ! clinical monitoring of each
patient to determine optimal phase-space reconstruction
rameters, which subsequently would be fixed for ambulat
monitoring, ~iii ! the specific nonlinear feature~s! for seizure
forewarning in the EEG, and~iv! the response of our ap
proach to psychiatric states, such as hysterical seizures.

VI. DISCUSSION

We presented model-independent indicators to de
condition change~dissimilarity! in nonlinear time series. The
phase-space indicators of condition change measure the
ference between these density functions for a basecase a
testcase, asx2 statistics andL1 distance. Thus, these indica
tors integrate~and magnify! the differences between the pro
cess dynamics, and avoid the inner cancellation effects
to averaging over many orbits~as one does, for instance
when calculating the correlation dimension and Kolmogor
entropy!. Changes in the Bondarenko attractor are clea
detected by these phase-space measures and by Kolmog
entropy, asc increases from 5 to 18~Fig. 1!. On the other
IP copyright, see http://ojps.aip.org/chaos/chocpyrts.html.
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hand, these changes are either undetected or barely det
by the correlation dimension and mutual information me
sures. The phase-space measures also indicate signi
preseizure changes in all 20 EEG datasets~Table II!. How-
ever, the correlation dimension, Kolmogorov entropy, a
mutual information fail to detect any change at all in 7,
and 6 EEG datasets, respectively. These results show tha
phase-space measures are superior to traditional nonl
measures for detection of condition change. The conne
phase space distribution function also contains informa
about the dynamical flow from one attractor state to the n

We find that indications of condition change exist ove
range of embedding parameters~d, S, N, and l), for the
following reason. If the full distribution function in the ac
tual phase space isZ, then a partially reconstructed distribu
tion function,Y, is the sum over regions ofZ that map intoY,
multiplied by the Jacobian determinant for the change
variables. Thus, the information in every component ofZ
will affect the Y space, unless the projection,Z°Y, is cho-
sen carefully to avoid dependency, which we have not do
Kennel39 used this approach to test for dynamical nonstati
arity in experimental data without resolving the dimensio
ality in the time series. The important question of optim
embedding parameters for measuring dissimilarity with
measures will be addressed elsewhere.

An early version40 of this approach was successfully a
plied to detect dynamical change in various physical p
cesses. Examples include distinguishing different drilli
conditions from spindle motor current of a machining cent
detecting balanced and unbalanced centrifugal pump co
tions from motor power; and predicting failure of a bellow
coupling in a rotating drive train from motor current. Mo
recent analyses include discerning the difference in mic
cantilever vibrations with and without mercury on the se
sor; and forewarning of cardiac fibrillation. Success for su
diverse applications suggests that this technique can be
ably used for measuring condition change in nonlinear p
cesses.
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