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this cover letter. We subsequently will convert this FY02 annual report into an ORNL Technical 
Memorandum. 
 
Best Regards, 
 
 
 
Lee M. Hively, Ph.D. 
 
LMH: lmh 
 
Cc: D. M. Hetrick, ORNL 

L. McDaniel, DOE/NE-20 
M. A. Feltus, DOE/NE-20 
S. R. Martin, DOE/ORO 
G. E. Michaels, ORNL 
T. P. Miller, DOE/NE-20 
V. A. Protopopescu, ORNL 
K. M. Reichard, PSU 
F. A. Ross, DOE/NE-20 
File-LMH 

 

 



 2

                            ORNL/TM-2002/183 (draft) 
 
 

Annual Report 
 
 

Nuclear Energy Research and Development Program 
Nuclear Energy Research Initiative 

 
 

NERI Proposal #2000-0109 
Interoffice Work Order (IWO) M0SF 00-109 

Forewarning of Failure in Critical Equipment at Next-Generation NPP 
 
 
 

August 2001–August 2002 
 
 
 

Oak Ridge National Laboratory 
 

L.M. Hively 
V.A. Protopopescu 

 
 
 

September 2002 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 3

Narrative 
 
NERI Project #2000-0109 began in August 2000 and has three tasks. The first project year addressed 
Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power 
facilities. That work is described in the first year’s annual report, which was sent to you earlier.  The 
current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-
3. This report describes the work for the second project year, spanning August 2001 through August 
2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. 
 
The objective of the second project year’s work is a compelling demonstration of the nonlinear 
prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) 
is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade 
equipment, as opposed to many different failure modes from one piece of equipment. Long-term 
monitoring of operational utility equipment is possible in principle, but is not practically feasible for the 
following reason. Time and funding constraints for this project do not allow us to monitor the many 
machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure 
rates (<10-3/year) in the operational environment. Moreover, the ONLY way to guarantee a controlled 
failure sequence is to seed progressively larger faults in the equipment or to overload the equipment for 
accelerated tests. Both of these approaches are infeasible for operational utility machinery, but are 
straight-forward in a test environment. Our subcontractor has provided such test sequences. Thus, we 
have revised Tasks 2.1-2.4 to analyze archival test data from such tests. 
 
The second phase of our work involves validation of the nonlinear prognostication over the second and 
third years of the proposed work. Recognizing the inherent limitations outlined in the previous paragraph, 
Dr. Feltus urged ORNL to contact other researchers for additional data from other test equipment. 
Consequently, we have revised the work plan for Tasks 2.1 – 2.2, with corresponding changes to the work 
plan as shown in the Status Summary of NERI Tasks (below). The revised tasks are as follows. 
 
Task 2.1: ORNL will obtain test data from a subcontractor and other researchers for various test 
equipment. This task includes development of a test plan or a description of the historical testing, as 
appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, data 
acquisition equipment, and resulting data from the test sequence. ORNL will analyze this data for quality, 
and subsequently via the nonlinear paradigm for prognostication.  
 
Task 2.2: ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison 
metrics for reliability of the predictions will include the true positives, true negatives, and the 
forewarning times.  
 
Task 2.3: ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 
2.1-2.2, to maximize the rate of true positive and true negative indications of failure. Maximal 
forewarning time is also highly desirable. 
 
Task 2.4: ORNL will develop advanced algorithms for the phase-space distribution function (PS-DF) 
pattern change recognition, based on the results of Task 2.3.  This implementation will provide a 
capability for automated prognostication, as part of the maintenance decision-making. 
 
Appendix A provides a detailed description of the analysis methods, which include conventional 
statistics, traditional nonlinear measures, and ORNL’s patented nonlinear phase-space dissimilarity 
measures (PSDM). The body of this report focuses on results of this analysis. 
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Additional Data 
 
Dr. Feltus suggested potential contacts for additional data for this project. ORNL has pursued these and 
follow-on contacts. Table 1 summarizes these contacts, including several investigators who are willing to 
provide data. To date, ORNL has obtained data from a few researchers, as discussed next. 
 
Don Jarrell (PNNL) sent information to ORNL via e-mail on 10/2/01, including a description of pump 
cavitation tests for their FY02 NERI project. The specific data spanned 600-1400 seconds for each of 
three experiments. However, the sampling rate of 1 Hz was much too slow to allow analysis by our 
nonlinear algorithm. No additional data has been received from Don Jarrell.  
 
ORNL obtained test data on CD-ROM from Dr. Amir Shirkhodaie (Tennessee State University, Dept. of 
Mechanical Engineering) on 11/7/01. These tests involve a motor-bearing system (Fig. 1) running at 900-
3500 RPM. Sixteen channels of data were recorded in each record, including a time stamp, twelve 
accelerations, two forces, and one acoustic reading. All data were sampled at 10.8 kHz. Data quality 
analysis revealed one test sequence with only eight undocumented channels. Other data had blank 
records, inadequate dataset lengths, or an inconsistent number of channels across multiple datasets for the 
same test sequence. The data quality check was passed by one test sequence, for which typical data 
segments are shown in Fig. 2. Only a single (acoustic) channel in this sequence seemed to have an 
adequate sampling rate (top plot in Fig. 2). This test involved an imbalance fault (130 grams) at 1500 
RPM with data sampled at 10.8 kHz for 5 seconds (54,000 data points). Two such imbalance datasets 
were provided, along with two normal datasets, one before the imbalance tests and one afterward. 
However, the two baseline datasets have different features, just by comparing the linear measures: 
minimum, maximum, absolute average deviation, standard deviation, skewness, kurtosis, average number 
of time steps per cycle, and first zero in the auto-correlation function. Unsurprisingly then, the nonlinear 
measures of dissimilarity between the baseline datasets are large (>0.7 standard deviations from the mean) 
compared to the intra-dataset variability in those same nonlinear dissimilarity measures (≤0.5 standard 
deviations from the mean). Comparison of both test cases to the second baseline shows clear differences 
in the linear measures by a factor of 2-2.5. Nonlinear measures of dissimilarity between the second 
baseline and the test cases are 3-5 standard deviations from the mean, which is better than the linear 
measures. Figure 3 shows two-dimensional phase-space portraits of this acoustic data, xi , by plotting 
pairs of points (xi+λ , xi) that are connected by straight lines for values of lag, 1 ≤ λ ≤ 20. The images 
resemble a cross, indicating abrupt changes due to an inadequate sampling. ORNL sent an e-mail to Dr. 
Shirkhodaie on 11/12/01 with details of this analysis, questions, and a suggestion for increasing the data 
sampling rate. Dr. Shirkhodaie’s e-mail response on 11/19/01 indicated this data was from initial 
experiments, and that they are working to eliminate the data quality problems. Dr. Shirkhodaie said in a 
subsequent e-mail exchange on 11/20-11/21/01 that he would be glad to share additional data with ORNL 
as it becomes available. As of this writing, no additional data has been received from Dr. Shirkhodaie. 
 
A third fruitful contact is Jan Stein (EPRI) who was the project leader for evaluation of various 
commercial diagnostics for large motors, beginning in 1994. The project report is “Electric Motor 
Predictive Maintenance Program,” TR-108773-V2 (1999), which ORNL bought from EPRI for $1,000. 
The report included a CD-ROM of actual data from the testing. We expect that additional data will be 
forthcoming. ORNL’s analysis of the present EPRI data is provided below.  
 
We obtained sample data from Dr. Maria Elena Montesino Otero (Universidad Politeckica de Valencia, 
Spain). Our analysis of this data also is described below. 
 
Dr. Al Akerman (ORNL) kindly provided machine data on CD-ROM. The data were acquired from 
vacuum pumps, blower motors, and purifiers in Building 9204-4 at the Oak Ridge Y12 Plant. The specific 
data included motor current, vibration, moisture, oxygen, and gas flow rate. Most of the data were 
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encoded in LabViewTM binary files. RMS values of other data are at one-minute intervals, which is very 
under-sampled for our analysis. We are presently unable to pursue further analysis of this data. 
 
Analysis of EPRI Motor Power Data: Airgap-Offset Fault 
 
EPRI began a project in 1994, entitled “Electric Motor Predictive Maintenance Program.” Jan Stein 
(EPRI) led the project, which evaluated of various commercial diagnostics for large motors. Details are 
reported in EPRI report # TR-108773-V2 (1999). The report included a CD-ROM of actual data from the 
testing. That work involved collaboration by several utilities and EPRI on seeded faults in large electric 
motors. The datasets were recorded in snap-shots of 1.5 seconds, sampled at 40 kHz (60,000 total time-
serial samples), including three-phase voltages and currents, plus tri-axial accelerations at inboard and 
outboard locations on the motor. Several anomalies were introduced in the motors to simulate the most 
common pre-failure in-service conditions. ORNL received data for three different seeded faults via the 
CD-ROM that accompanied the EPRI report. 
 
The specifications of the first motor were as follows. 
 
 Manufacturer:  Allis Chalmers    Bearing type:   sleeve 
 Rated voltage:  4160       Nameplate current:  100 amps 
 Rated HP:   800        Number of rotor bars:  94 
 Winding type: form wound     Number of stator slots:40 
 Phases:   3        Hertz:      60 
 RPM:    710       Motor type:    induction 
 Insulation class: F        Poles:      10 
 Enclosure:  TEFC       Bar configuration:  copper 
 
The test sequence initially acquired data from the motor running in its nominal state (first dataset). Two 
different airgap-offset seeded-faults then were imposed via preinstalled jackscrews. The second dataset 
involved an inboard airgap offset of 8 mils from the nominal value of 30 mils. The third dataset retained 
the first fault, and added an additional seeded-fault outboard airgap offset by 20% in the opposite 
direction from the inboard shift. This additional fault resulted in the rotor being skewed relative to the 
stator. These offsets were static, because neither varied relative to the stator with the motor running. 
 
We discuss details of the data next. All of the datasets on the EPRI CD-ROM had non-printable 
characters at the beginning and end of the file that confounded normal input as ASCII data to the 
FORTRAN analysis. Moreover, the ‘TYPE’ utility in DOS could not display the non-printable data. 
However, the MATLABTM editor was able to read these datasets. This editor was also able to write a 
FORTRAN-readable ASCII file, after adding, then deleting a space at the beginning of the file, and after 
the addition of a carriage-return/line-feed at the end of the file. The three datasets for this first test 
sequence were concatenated into a single long dataset for ease of analysis. The three-phase voltages (Vi) 
and currents (Ii) were converted into instantaneous motor power, P = Σi IiVi , where the sum runs over the 
three phases, as shown in Fig. 4. The particularly noteworthy feature in Fig. 4 is that the instantaneous 
power (bottom subplot) displays rich dynamical features, which are not at all apparent in the noise-free 
sinusoidal variation in the currents and voltages (upper six subplots) in Fig. 4. Consequently, we focus the 
analysis on instantaneous power, rather than the individual currents or voltages. Closer examination of the 
power reveals a slow, low-amplitude variation with a period of roughly 0.1s. We removed this artifact 
with ORNL’s patented zero-phase quadratic filter. Otherwise, this artifact confounds the interpretation of 
our results. We split each of the three datasets into five subsets of 12 000 points each, giving fifteen total 
subsets for analysis. This artifact-filtered data showed no data quality problems.  
We next compare the condition change in linear, traditional nonlinear, and phase-space dissimilarity 
measures. Figure 5 shows linear measures of artifact-filtered motor power. All of the linear measures 
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show an abrupt change with the onset of the airgap-offset faults, but no other systematic trends. Figure 6 
shows the change in three conventional nonlinear measures. The mutual information function (MIF) 
measures the average information (in bits) that can be inferred from one measurement about a second 
measurement and is a function of the time delay between the measurements. Univariate MIF measures 
predictability within the same data stream at different times. For the present analysis, we use the first 
minimum in the univariate MIF, M1, to indicate the average time lag that makes Pi independent of Pj . The 
top plot of Fig. 6 shows that M1 decreases erratically from thirteen (13) to eleven (11) time steps during 
the first (nominal) dataset, then varies erratically between ten (10) to twelve (12) time steps during the 
second (8 mil air-gap test) dataset, and finally rises even more erratically from twelve (12) to sixteen (16) 
time steps during the last (20% air-gap test) dataset. The middle plot of Fig. 6 shows the maximum 
likelihood correlation dimension (D), which is roughly constant at 3.7 during the first dataset, then 
decreases to a second roughly constant value at 1.4 for the second and third datasets. The bottom plot 
displays the maximum-likelihood Kolmogorov entropy (K), which measures the rate of nonlinear 
information loss (bits/s) in the data. K rises erratically from 0.019 to 0.026 during the first dataset, then 
decreases to roughly constant value of nearly zero for the second and third datasets. Figure 7 illustrates 
the two-dimensional phase-space reconstruction of the artifact-filtered nominal-state power for several 
different time lags, showing progressive “unfolding” of geometric representation for these dynamics.  
 
A systematic search revealed a set of phase-space reconstruction parameters that are most sensitive to the 
condition change for the air-gap seeded-fault test sequence, as shown in Fig. 8. This Figure shows an 
almost linear rise in the connected-phase-space dissimilarities (second from the top and bottom plots) 
from near zero for the nominal state to ~20 for the double-seeded air-gap fault. The rise in non-connected 
dissimilarity measures is monotonic, but little changed between the two faulted states. Thus, we find that 
condition change in this test sequence is detected to some degree by all of the linear, conventional 
nonlinear, and phase-space dissimilarity measures; the connected-phase-space dissimilarities show the 
progressively worsening severity of the fault most clearly. 
 
Analysis of EPRI Motor Power Data: Broken-Rotor Fault 
 
A second test sequence for this motor began with the motor running in its nominal state (first dataset), 
followed by progressively more severe broken rotor bars. The second dataset involved a simulated failure 
that was one rotor bar cross section cut 50% in half at the 11 o’clock position. The third dataset was for 
the same rotor bar next cut through 100%. The fourth dataset was for a second rotor bar cut 100% at the 5 
o’clock position, exactly 180° from and in addition to the first rotor failure. The fifth dataset was for two 
additional rotor bars cut adjacent to the original 11 o’clock bar, with one bar cut on each side of the 
original, yielding four bars completely open. The EPRI report says that the data-collection personnel 
noted a definite growling sound and a pulsating vibration during this last test. We concatenated the five 
datasets into a single long dataset for ease of analysis, and converted the three-phase voltages and currents 
into instantaneous power, as before. We split each of the five datasets into five subsets of 12,000 points 
each, giving twenty-five (25) total subsets. The power has a slow, low-amplitude variation with a period 
of roughly 0.1s. As before, we removed this artifact, which otherwise confounds the interpretation of our 
results. A check of this artifact-filtered data revealed no data quality problems. 
 
We first show linear measures of artifact-filtered motor power in Fig. 9. The top plot in Fig. 9 illustrates 
that the minimum, maximum and standard deviation in motor power are essentially flat until the abrupt 
change during the last test (four cut rotor bars) in the sequence. Skewness and kurtosis (second plot 
down) also are flat until the last test, when they both change abruptly and in opposite directions. The 
number of time steps per cycle in the motor power (third plot down) decreases slowly and very noisily 
from 53 to 45 time steps per cycle (15% change). The first zero in the autocorrelation function varies 
erratically between 32-33 time steps during the nominal state, remains constant at 33 time steps for the 
first four faults, and then varies erratically again between 32-34 time steps during the last test. 
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For additional comparison, we show the variation of three conventional nonlinear measures in Fig. 10. 
The top plot of Fig. 10 shows that the first minimum in the mutual information function, M1, varies 
erratically for the first four datasets, then rises to 14 time steps and remains there. The middle plot of Fig. 
10 shows that the maximum likelihood correlation dimension (D) also varies erratically over the whole 
test sequence. The bottom plot displays the Kolmogorov entropy (K), which shows no consistent trend. 
 
We systematically varied the phase-space reconstruction parameters to obtain the most monotonic 
increase in condition change for the broken-rotor seeded-fault test sequence. Figure 11 shows that the 
phase-space dissimilarity measures rise by ten-fold over the test sequence. The parameters are: S=88 
(number of equiprobable phase-space symbols), d=4 (number of phase-space dimensions), λ=31 (time 
delay lag in time steps), and w=550 (half width of the artifact filter window in time steps). The 
exponential rise in the magnitude of the seeded faults (doubling from 0.5 to 1.0 to 2.0 to 4.0) is mirrored 
in Fig. 11 by a linear rise in the logarithm of the dissimilarity measures. We conclude that the 
conventional statistical and traditional nonlinear measures provide no forewarning of failure for the 
broken-rotor bars. In sharp contrast, PSDM show condition change that is a proportional to the 
exponentially increasing severity of the rotor-bar fault, providing clear forewarning of the failure. 
 
Analysis of EPRI Motor Power Data: Turn-to-Turn Shorts 
 
The EPRI data included a General Electric motor, with the following specifications. 
   
 Rated voltage:  4000      Bearing type:   sleeve 
 Rated HP:   500       Number of rotor bars:  84 
 Winding type: form wound    Number of stator slots:108 
 Phases:   3       Hertz:      60 
 RPM:    1185      Motor type:    induction 
 Insulation class: B       Poles:      6 
 Enclosure:  open      Bar configuration:  copper rectangular 
 
This sequence began with the motor running in its nominal state (first dataset). The second dataset had a 
turn-to-turn (2.70-ohm) short by installing a large screw between two turns. The third dataset had a more 
severe turn-to-turn (1.35-ohm) short by installing a smaller screw between two turns. These three datasets 
were concatenated into a single long dataset for this analysis. The sequence for the concatenation goes 
from largest turn-to-turn resistance (infinite resistance, corresponding to no short), to smaller (2.7 ohms), 
to smallest (1.35 ohms), corresponding to increasing severity in the fault. As before, the three-phase 
voltages and currents were converted into instantaneous power. The three datasets were split into five 
subsets of 12 000 points each, giving fifteen (15) total subsets. Figure 12 shows three-phase voltages and 
currents, plus motor power for the nominal operating state. This data has a low-amplitude, low-frequency 
artifact with a period of roughly 0.006s. As before, we remove this artifact, which would otherwise 
confound the interpretation of our analysis. The artifact-filtered power data has no data quality problems. 
As before, our analysis compares the condition change in linear, traditional nonlinear, and phase-space 
dissimilarity measures. Figure 13 shows linear measures of artifact-filtered motor power. The minimum, 
maximum, and average (plus or minus one standard deviation) in the power (top subplot in Fig. 13) are 
essentially constant during the entire test sequence. The same is true of the skewness and kurtosis (second 
plot down in Fig. 13). The number of time steps per cycle varies erratically around 17 throughout the test 
sequence. The first zero in the autocorrelation function also varies erratically between 11 and 28 during 
the first dataset, then is essentially constant during the fault tests. 
 
Figure 14 shows the change in the three conventional nonlinear measures. The top plot of Fig. 14 shows 
that M1 varies erratically between eight (8) and ten (10) time steps during the nominal state, decreases 
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erratically to seven (7) time steps during the second dataset, and is roughly constant at 7-8 time steps 
during the last dataset. The middle plot of Fig. 14 shows the maximum likelihood correlation dimension 
(D), which varies erratically between 3.7 and 4 during the nominal state, varies erratically between 3.6 
and 4.2 during the second dataset, and shifts from 4.08 down to a plateau of roughly 3.8 during the last 
dataset. The bottom plot displays the maximum-likelihood Kolmogorov entropy (K), which varies 
erratically between 0.043 and 0.079 during the first (nominal) dataset, varies between 0.06 and 0.1 during 
the second datasets, and is even more erratic (between 0.05 and 0.14) during the last dataset.  
 
Systematic variation of the phase-space reconstruction parameters revealed values that are most sensitive 
to the condition change for the turn-to-turn seeded-fault test sequence. Figure 15 shows that all four of the 
phase-space dissimilarity measures rise monotonically over the test sequence. The parameters are: S=129 
(number of equiprobable phase-space symbols), d=3 (number of phase-space dimensions), λ=1 (time 
delay lag in time steps), and w=221 (half width of the artifact filter window in time steps). The linear rise 
in the magnitude of the seeded faults (from 2.7 to 1.35 ohms) is mirrored in Fig. 15 by a linear rise in the 
dissimilarity measures. We conclude that the conventional statistics and traditional nonlinear measures 
provide no forewarning of failure for the turn-to-turn shorts. In sharp contrast, the nonlinear dissimilarity 
measures show condition change that is a proportional to the increasing severity of the rotor-bar fault, 
providing clear forewarning of the failure. 
 
Analysis of Motor Data from Polytechnic University of Valencia 
 
Dr. Maria Elena Montesino Otero (Universidad Politeckica de Valencia, Spain) sent nine digital datasets 
via e-mail to ORNL on April 19, 2002. Each ASCII data file contained 16,384 points of uni-axial 
accelerometer data with corresponding time stamps. The data were sampled at 600 Hz from a three-phase, 
1/4-HP motor running at 18 Hz with a progressively larger imbalance fault. ORNL concatenated the nine 
datasets into one long data file for subsequent analysis. A check of the data quality revealed no data gaps 
(based on the time stamps) or other problems. 
 
Figure 16 displays the conventional statistical measures for this data. Figure 16a shows a monotonic 
increase in the magnitude of the minimum, maximum, absolute average deviation, and the sample 
standard deviation. Figure 16b shows no correlation of the skewness with the dataset number. Figure 16c 
also shows a monotonic increase in the magnitude of the (negative) kurtosis with dataset number. The 
number of time steps per cycles also increases monotonically (Fig. 16d) over datasets 1-6, and then is flat 
for the remainder of the test sequence. The first zero in the auto-correlation function (Fig. 16e) is constant 
at eight time steps over the entire test sequence. Thus, some (but not all) of the conventional statistical 
measures are correlated with the increasing fault severity for this test sequence. 
 
Figure 17 illustrates the three conventional nonlinear measures for this data. The top subplot in Fig. 17 
shows that correlation dimension (D) decreases monotonically with the dataset number. The middle plot 
in Fig. 17 depicts such a noisy decrease in Kolmogorov entropy (K) versus dataset number, so that 
essentially no correlation exists. The first minimum of the mutual information function (bottom plot of 
Fig. 17) is constant at eight time steps, rising briefing to nine for dataset #7. Thus, only the correlation 
dimension has a clear relation with the increasing severity of the fault in this test sequence. 
 
A systematic search determined the set of phase-space reconstruction parameters that are most sensitive to 
the condition change for this test sequence. Figure 18 shows the corresponding results with a nearly linear 
rise in all four of the (non)connected-phase-space dissimilarities. The dissimilarity for the first dataset is 
not shown, because it’s always zero, due to comparing the basecase with itself. The (non)connected 
phase-space dissimilarities clearly show the progressively worsening severity of the unbalance fault. 
 
Analysis of Motor Data from Pennsylvania State University 
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The Pennsylvania State University (PSU) operates the Applied Research Laboratory (ARL). Their  
facilities include the Mechanical Diagnostics Test Bed (MDTB), a motor-drive-train-generator test stand, 
as shown in Fig. 19 (upper picture). The gearbox is driven at a set input speed using a 30 HP, 1750 RPM 
AC (drive) motor, and the torque is applied by a 75 HP, 1750 RPM AC (absorption) motor. The 
maximum speed and torque are 3500 RPM and 225 ft-lbs respectively. The speed variation is 
accomplished by varying the frequency to the motor with a digital vector drive unit. The variation of the 
torque is accomplished by a similar vector unit capable of controlling the current output of the absorption 
motor. The system speed and torque set points are produced by analog input signals (0-10 VDC) supplied 
by the Data Acquisition (DAQ) Computer and a D/A board. The MDTB is highly efficient because the 
electrical power that is generated by the absorber is fed back to the driver motor. The mechanical and 
electrical losses are sustained by a small fraction of wall power. The MDTB has the capability of testing 
single and double reduction industrial gearboxes with ratios from about 1.2:1 to 6:1. The gearboxes are 
nominally in the 5-20 HP range. The system is sized to provide the maximum versatility to speed and 
torque settings. The motors provide about 2 to 5 times the rated torque of the selected gearboxes, and thus 
the system can provide good overload capability. The use of different reduction ratios and gearboxes than 
listed above is possible if appropriate consideration to system operation is given. The motors and gearbox 
are hard-mounted and aligned on a bedplate. The bedplate is mounted using isolation feet to prevent 
vibration transmission to the floor. The shafts are connected with both flexible and rigid couplings. 
Torque limiting clutches are used on both sides of the gearbox to prevent the transmission of excessive 
torque as could occur with gear jam or bearing seizure. In addition, torque cells are used on both sides of 
the gearbox to directly monitor the efficiency and the loads transmitted. Appendix B provides further test 
details. 
 
The test protocol involved: (i) a linear increase in motor speed from zero to the operational speed, (ii) 
maintenance of this constant speed for some chosen period, (iii) a linear decrease in motor speed from (ii) 
to zero, (iv) sampling of the gearbox oil for particulates as a measure of gear wear. The cycle of (i)-(iv) 
was repeated many times under the test load until the gearbox failed, meaning that one or more gear teeth 
broke, causing the experiment to stop. The present analysis uses only the flattop data from (ii) of the test 
cycle, for which forty-four datasets were available for each data channel, each containing ten seconds of 
test data. Measurements included acceleration, acoustic sounds, temperature, torque, rotation speed, input 
and load power, and RMS currents. Much of this data (temperature, relative oil dielectric) are sampled 
much too slowly (e.g., 1 Hz) to be useful for the present analysis. Other data (rotational speed, drive 
power, load power, drive current, load current, and coil temperatures) are sampled at 1 kHz, but fail the 
data quality check also due to inadequate sampling speed. The present analysis focuses on load torque, 
which is sampled at 1 kHz and which passes all of the data quality tests. Thus, each ten-second dataset 
has 10 000 data points, all of which were concatenated serially into a single data file for ease of analysis. 
Figure 19 (lower plot) shows a one second sample of typical load torque data, which is quasi-periodic 
with complex, nonlinear features. Figure 20 shows the erratic variation over the test sequence of the linear 
measures of this load torque data. Skewness (solid curve in the second subplot down) decreases gradually 
(but very irregularly) from 0.3 to –0.2, and is the only linear measure that shows any systematic change. 
The first zero in the autocorrelation function (bottom subplot of Fig. 20) rises in datasets #26-27 and 30, 
which is immediately prior to the failure onset. Figure 21 displays the traditional nonlinear measures of 
the load torque, none of which has any systematic trend as the test sequence progresses. Figure 22 
displays the phase-space dissimilarity measures for this test sequence, with low values (below 0.875) for 
datasets #1-29. All four dissimilarity measures rise abruptly, beginning at dataset #30, and remain above 
0.894 for the remainder of the test sequence. These results show that only the phase-space dissimilarity 
measures provide forewarning of the impending failure. 
 
Analysis of Motor Data from Pennsylvania State University (Run 33) 
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ORNL decided to engage PSU (Dr. Karl Reichard) under subcontract to acquire test data for this project, 
based on the data analysis in the previous section. This test sequence was designated “RUN33,” and also 
involved the Mechanical Diagnostics Test Bed (MDTB), as described in App. B. Measurements included 
acceleration, acoustic sounds, temperature, torque, rotation speed, input and load power, and RMS 
currents. ORNL chose to focus on the tri-axial acceleration, based on analysis of several initial PSU 
sample datasets. ORNL obtained the data electronically via FTP from a passworded-account on a PSU 
server. Each data file contained test data for one accelerometer channel. The data were obtained at ten-
minute intervals through the test sequence, sampled at 102.4 kHz. The total amount of data was 4.5 GB 
(three accelerometer channels, times 401 snapshots for a total of 1203 files) in MatLab binary format. 
ORNL serially concatenated 100,000 data points from each of the data files into a single three-channel 
dataset for ease of analysis (1.6 GB). Each 100,000-point snapshot was divided into ten 10,000-point 
subsets for this analysis; the results were then averaged over these ten cutsets to obtain a typical value for 
the entire snapshot. Figure 23 shows typical RUN33 data for each accelerometer channel with quasi-
periodic, complex, nonlinear features. Figure 24 shows conventional statistical measures throughout the 
RUN33 test sequence. The top plot shows noisy, gradual increases in the magnitudes of the minimum 
(An), maximum (Ax), absolute average deviation (a), and sample standard deviation (σ) for each 
acceleration signal. The other conventional statistical measures in Fig. 24 show no clear trend through the 
test sequence. Figure 24 also reveals two datasets (#119 and 266) with abruptly lower signal, where the 
operator did not stop the data acquisition system during diagnostic shutdowns of the test. This signal loss 
does not invalidate the remainder of the data, so we ignore these two datasets in subsequent analysis. 
 
The use of three orthogonal accelerations has a unique and important advantage, as follows. Acceleration 
is a three-dimensional vector, A, that can be integrated once in time to give velocity vector, V = ∫ A dt. 
Mass times acceleration (vector) is force vector, F = mA. The vector dot-product of force and velocity is 
power (scalar), P = F • V. Thus, three-dimensional acceleration data can be converted into a scalar power 
via straight-forward methods of calculus and mechanics. ORNL previously used this approach to analyze 
tri-axial acceleration data from a metal cutting (lathe) operation. That analysis found that the resulting 
three-dimensional accelerometer power captured the relevant dynamics and had more information about 
the process than any single accelerometer channel. We used this same approach to obtain power using the 
tri-axial accelerometer data from the PSU MDTB test sequence. Figure 25 shows a sample of the RUN33 
power data, which displays very complex, nonlinear features. Figure 26 shows conventional statistical 
measures of the RUN33 accelerometer power data. The top plot shows noisy, gradual increases in the 
magnitudes of the minimum (Pn), maximum (Px), absolute average deviation (a), and sample standard 
deviation (σ) for the accelerometer power. The other conventional statistical measures of accelerometer 
power show no clear trend through the test sequence. Figure 26 also shows the same quality problem as in 
Fig. 24 for datasets #119 and 266, which we ignore as discussed above. Failure onset begins at dataset 
#394. Figure 27 shows the corresponding traditional nonlinear measures, none of which show 
forewarning of the failure. We conclude that only a few of conventional statistics (minimum, maximum, 
a, and σ) provide forewarning trends, but none of the traditional nonlinear measures provide indication of 
the impending machine failure. 
In sharp contrast to the previous unclear trends, Fig. 28 shows a systematic rise in all four renormalized 
measures of dissimilarity, with an additional abrupt rise at the onset of failure. We obtained this result by 
constructing a composite measure, Ci, of condition change, namely the sum of the four renormalized 
measures of dissimilarity for each of the datasets in the test sequence. This approach shows both the rising 
dissimilarity as the test progresses and an indication of failure onset. We used the following algorithm to 
obtain this result. First, construct the composite measure for the i-th dataset: 

Ci = U(χ2) + U(χc
2) + U(L) + U(Lc).          (1) 

Second, fit Ci to a straight line via least-squares over a window of m datasets (#194-393 in this case): 
            yi = ai +b.               (2) 
Third, obtain the variance of Ci about the straight-line fit from step 2: 
          σ1

2 = Σi (yi – Ci)2/(m-1).            (3) 
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Fourth, determine the χ2-statistic from this straight-line fit for datasets #394-400: 
          χ2 = Σi (yi – Ci)2/σ1

2.            (4) 
Fifth, maximize the value of χ2 from step 4 over the parameters (d, S, λ). The variance, σ1

2, in step 3 
measures the variability of Ci about the straight-line fit over the window of m datasets (#194-393). The 
statistic, χ2, in step 4 measures the variability of datasets #394-400 from the straight-line fit. The value 
from step 4 is χ2 = 180.42, which is inconsistent with a normal distribution for seven degrees of freedom, 
and is a strong indication of the failure onset. Indeed, Figure 29 shows a clear statistical indication of 
failure onset. The bottom plot (labeled “normal distribution”) in Fig. 29 depicts the maximum value of the 
χ2 statistic for n sequential values out of 200 samples from a guassian (normal) distribution with zero 
mean and a unity sample standard deviation. The middle curve in Fig. 29 is the maximum value of the χ2 
statistic, using step 4 above, for n sequential values of the composite measure, Ci, over the window of 
m=200 datasets that span the straight-line fit (datasets #194-393). This middle curve is inconsistent with 
the normal distribution (bottom curve). The upper curve in Fig. 29 is the χ2 statistic, also using step 4 
above, for n sequential values from datasets #394-400. This upper curve (labeled “failure onset”) deviates 
markedly from the lower curves after two datasets (#394-395), with overwhelming indication for three 
and more datasets. We conclude that the phase-space dissimilarity measures provide consistent indication 
of condition change, as well as clear indication of the failure onset. 
 
Analysis of Motor Data from Pennsylvania State University (Run 34) 
 
PSU repeated the MDTB experiment (RUN34) with the same experimental parameters as RUN33. The 
sampling frequency was 51.2 kHz, based on our findings from RUN33. The raw data consisted of 560 
datasets in MatLab binary format for each of the three orthogonal accelerations for a total of 3.2 GB, 
which PSU sent to ORNL on a DVD disk. ORNL serially concatenated 150,000 data points from each of 
the data files into a single three-channel dataset (2.1 GB) for ease of analysis. The tri-axial acceleration 
data was converted into one channel of accelerometer power, as described above. Each 150,000-point 
snapshot was divided into ten 15,000-point subsets for analysis; the results were then averaged over these 
ten subsets to obtain a typical value for the entire snapshot. Data quality analysis showed that the 51.2 
kHz sampling frequency was adequate. However, the experimental record of RUN34 showed numerous 
annotations of bad datasets, due to known experimental problems. Omission of these bad datasets 
deduced the total number of useful datasets by 37% to 355. In addition, erratic and inconsistent variations 
existed in the data amplitude. RUN34 was rejected from further analysis, due to these quality problems. 
 
Analysis of Motor Data from Pennsylvania State University (Run 35) 
 
PSU repeated the MDTB experiment for a third time (RUN35) with the same experimental parameters as 
RUN33. The sampling frequency was 51.2 kHz. The raw data consisted of 845 datasets in MatLab binary 
format for each of the three orthogonal acceleration directions, which PSU provided on a DVD disk 
(5GB). ORNL serially concatenated 200,000 data points from each of the data files into a single three-
channel dataset for ease of analysis. The tri-axial acceleration data was converted into one channel of 
accelerometer power, as described above (1.8 GB). Figure 30 shows sample plots of this quasi-periodic, 
complex data. Each 200,000-point snapshot was divided into ten 20,000-point subsets for analysis; the 
results were then averaged over these ten subsets to obtain a typical value for the entire snapshot. Data 
quality analysis revealed datasets with a zero signal or abrupt shifts, as shown in Fig. 31, not unlike the 
previous test sequences. Consequently, we retained these bad datasets, as typical of the intermittent 
quality problems that we must handle for automated prognostication. We further note from Fig. 31a that 
only the monotonic rise (fall) in the maximum (minimum) values of power give clear forewarning of the 
failure onset, beginning with dataset #838. Figure 32 shows the corresponding traditional nonlinear 
measures. The abrupt rise and fall before failure onset in correlation dimension (Fig. 32a) and 
Kolmogorov entropy (Fig. 32b) are not unlike the signatures for the bad datasets, and thus provide no 
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forewarning of failure. The monotonic fall in the first minimum of the mutual information function (Fig. 
32c) is unique and appears to be a valid forewarning of the failure. 
 
The top four subplots of Fig. 33 display the phase-space dissimilarity measures (PSDM), using the same 
phase-space parameters as PSU Run33 for a demonstration of repeatability. The PSDM have the same 
abrupt rises and falls for the bad datasets as the previous plots. Ignoring the bad datasets, we find a 
systematic rise in the PSDM, beginning at dataset #480, with an additional abrupt monotonic rise at the 
onset of failure, beginning at dataset #820. We obtained this result by constructing the same composite 
measure, Ci, of condition change, using the five-step process of Eqs. (1) - (4). We chose a window of one 
hundred cutsets for Eq. (2) over datasets #720 - 819. We computed the χ2 statistic, beginning with dataset 
#820. As before, Figure 34 depicts the maximum value of the χ2 statistic for n sequential values out of 
100 samples from a guassian (normal) distribution with zero mean and a unity sample standard deviation. 
The middle curve in Fig. 34 is the maximum value of the χ2 statistic, using step 4 above, for n sequential 
values of the composite measure, Ci, over the window of m=100 datasets that span the straight-line fit 
over datasets #720 - 819. This middle curve is inconsistent with the normal distribution (bottom curve). 
The upper curve in Fig. 34 is the χ2 statistic, also using step 4 above, for n sequential values from datasets 
#820-845. This upper curve (labeled “failure onset”) deviates markedly from the lower curves after six 
datasets, with overwhelming indication for seven or more datasets. We conclude that the phase-space 
dissimilarity method gives clear indication of condition change, as well as forewarning of failure. 
 
Analysis of Torsion Data from Pennsylvania State University 
 
PSU performed a second type of experiment to show failure forewarning in turbo-machinery. 
Specifically, this experiment simulated the effects of shifting turbine blade oscillation frequencies as a 
fatigue crack develops and grows. Appendix C provides details of the experiment. Figures C.1-C.2 show 
eight equally spaced threaded rods that simulate the blades, which are rotated about a horizontal axis by a 
DC motor. Previous PSU work on this experiment showed that adjustment of lock nut locations along the 
threaded rods can simulate the frequency shift, which can be sensed and tracked by measurement of the 
system’s torsional vibration. The present experiment extended the previous PSU work by simulating a 
crack at the base of one of the threaded rods via a progressively deeper 0.010-inch wide slot using electric 
discharge machining, in lieu of moving the nuts. Test data were acquired for each depth of cut. The data 
were sampled at 12.8 kHz and included: motor current and voltage, two-axis translational acceleration on 
one bearing pillow block, and torsional vibration of the shaft. Figure 35 illustrates a representative sample 
of this data at three different time scales, showing complex, quasi-periodic dynamics in all channels. Our 
previous experience has shown that all three acceleration axes are needed to capture the machine 
dynamics adequately. Consequently, the two-axis acceleration data were not pursued further. Comparison 
of the plots in right two columns of Fig. 35 shows that the dynamical properties of the AC-coupled motor 
power are different from the DC-coupled motor power. Thus, the latter data was used as the best 
representation of the machine dynamics for all subsequent analysis.  

Figure 36 shows the conventional statistical measures of the DC-coupled motor power as a function of the 
progressively larger slot depth. The top plot shows that no systematic change in the minimum (Pn), 
standard deviation (σ), absolute average deviation (a), and maximum (Px). The second plot from the top 
shows that both skewness and kurtosis are nearly constant versus slot depth. The third plot down from the 
top displays a series of small rises and falls in the number of time steps per cycle versus slot depth. The 
bottom plot illustrates a single decrease in the first zero of the autocorrelation function, followed by a 
constant value thereafter. Consequently, conventional statistical measures provide no forewarning. 

Plots of the traditional nonlinear measures are shown in Fig. 37. The correlation dimension (top plot) 
decreases from 2.4 for the first dataset, to 2.2 for the third dataset, then rises gradually over the next four 
datasets to 2.35. The Kolmogorov entropy (middle plot) has a decrease-increase-decrease sequence that is 
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likewise non-predictive. The first minimum in the mutual information function is constant at 6 time steps, 
then decreases to 5.95 at dataset 6, then rises again to 6 at the last dataset. Thus, the traditional nonlinear 
measures provide no failure forewarning. 
 
Figure 38 shows that all four PSDM rise monotonically from near zero to large values. This result was 
obtained by combining the four PSDM into a single composite measure, Ci, as described by Eq. (1). An 
exhaustive search then was performed over the parameter space of  the number of phase-space dimensions 
(d), the number of phase-space symbols (S), and the time-delay lag (λ). The search revealed a single set of 
parameters that give the monotonic rise in Ci. The meaning of these parameters is explained in App. A. 
We conclude that the phase-space dissimilarity measures show a systematic predictive trend for the 
progressive failure in this experiment. 
 
Analysis of Bearing Data from Pennsylvania State University 
 
PSU performed a third type of experiment to show forewarning of bearing failure. The Bearing 
Prognostic Test Rig uses a pair of double row spherical roller support bearings to support a shaft on 
which the test bearing is held in place by a bearing holder between the two support bearings.  The test rig 
was configured to test deep groove ball 1-1/8” test bearings, but is configurable to other types of bearings. 
A load jack and load cell were mounted directly behind the test bearing and have a radial load capacity of 
1,000 lbs in phase with the outer ring.  The system is driven by a SCR motor with an integral tachometer 
fitted to the motor. The motor is coupled to the test shaft with a flexible coupler to reduce transmitted 
vibration from the motor. Piezoelectric accelerometers are currently utilized with frequency ranges 
between 10 and 100KHz. Data were collected on a 48 channel National Instrument 4472 PXI system. The 
test ran continuously in the overloaded state, with data acquired at periodic intervals until the bearing 
finally failed. Appendix D provides details of the test plan and experimental setup. 
 
We describe the data analysis next. Five channels of data were sampled at a frequency of 51.2 kHz, 
including tri-axial acceleration at the test bearing, as well as motor current and motor voltage. PSU 
provided this data to ORNL on DVD disks, in the form of MatLabTM binary files (5.6GB). ORNL serially 
concatenated 500,000 data points from each of the data files into a single three-channel dataset with 895 
segments of three-channel accelerometer data (16.4GB). The tri-axial acceleration data were converted 
into one channel of accelerometer power, as described above (5.7GB); the 500,000 data points in each 
segment were subdivided into ten cutsets of 50,000 points each for the subsequent analysis. Figure 39 
shows time-serial samples of the accelerometer power, which has a very complex, nonlinear waveform 
with rises and falls in envelop amplitude over 200 milliseconds.  
 
Figure 40 displays the conventional statistical measures of the accelerometer power. The minimum and 
maximum (top plot) are variable about a series of plateaus, rising and falling without a clear trend.  
Skewness (bottom curve in the second plot from the top) is roughly constant during the entire sequence. 
Kurtosis (top curve in the second plot from the top) is moderately variable during the first one hundred 
cutsets, more variable and slightly larger over cutsets #100-300, then smaller and much less variable for 
cutsets #300-810, and finally larger and more variable for cutsets #811-895. The average number of time 
steps per cycle (third plot from the top) decreases gradually but erratically from 16 to 13. The first zero in 
the autocorrelation function (bottom plot) decreases erratically from five to four over cutsets #1-300, and 
then is constant at four thereafter. All of these conventional statistics display an abrupt spike at cutsets 
#104-105. These conventional statistical measures provide no clear forewarning of failure. 
 
Figure 41 depicts the traditional nonlinear measures of accelerometer power. Correlation dimension (top 
plot) is moderately variable over the entire sequence with a clear spike at cutsets #104-105. Kolmogorov 
entropy (middle plot) is very variable over the whole sequence without a clear trend. M1 (bottom plot) 
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falls abruptly from 4.7 to 4 at cutset #104, then remains constant at four thereafter. These traditional 
nonlinear measures give no failure forewarning. 
 
The top four subplots of Fig. 42 display the four phase-space dissimilarity measures (PSDM), with the 
same spikes as the other measures in datasets #104-105 and #200. Ignoring these spikes, the PSDM rise 
systematically, beginning at dataset #600. An additional abrupt rise occurs at failure onset, beginning at 
dataset #795. We used the five-step process of Eqs. (1) - (4) to obtain this result. We chose a window of 
one hundred cutsets for Eq. (2) over datasets #695 - 794. We computed the χ2 statistic, beginning with 
dataset #795. As before, the bottom curve in Figure 43 depicts the maximum value of the χ2 statistic for n 
sequential values out of 100 samples from a Gaussian (normal) distribution with zero mean and a unity 
sample standard deviation. The middle curve in Fig. 43 is the maximum value of the χ2 statistic, using 
step 4 above, for n sequential values of the composite measure, Ci, over the window of m=100 datasets 
that span the straight-line fit over datasets #695 - 794. This middle curve is inconsistent with the normal 
distribution (bottom curve). The upper curve in Fig. 43 is the χ2 statistic, also using step 4 above, for n 
sequential values from datasets #795-819. This upper curve (labeled “failure onset”) provides clear 
indication of failure onset after three or more consecutive datasets. We conclude that the phase-space 
dissimilarity method gives clear indication of condition change, as well as forewarning of failure. 
 
Discussion 
 
The objective of this phase is a compelling demonstration of the phase-space dissimilarity approach for 
forewarning of failures. Thus, we studied a variety of failures and different data. The table below 
summarizes the present results. The right-most column shows the measures that we tested for failure 
forewarning: conventional statistical measures [CSM] (data maximum [MX], data minimum [MN], 
absolute average deviation [a], standard deviation [σ], skewness [SK], kurtosis [KT], average number of 
time steps per cycle [TS]), traditional nonlinear measures [TNM] (correlation dimension [CD], 
Kolmogorov entropy [KE], first minimum in the mutual information function [M1], and phase-space 
dissimilarity measures (PSDM). 
 
Data Provider Equipment and Type of Failure Diagnostic Data   Measures to Forewarn of Failure 
EPRI    electric motor airgap offset  motor power    CSM TNM PSDM 
EPRI    electric motor broken rotor  motor power    PSDM 
EPRI    electric motor turn-to-turn short motor power    PSDM 
Otero (Spain) electric motor imbalance   1D acceleration   MN a  σ  MX KT CD PSDM 
PSU/ARL  overloaded gearbox    load torque    SK PSDM 
PSU/ARL  overloaded gearbox (RUN 33) accelerometer power MN a  σ  MX PSDM 
PSU/ARL  overloaded gearbox (RUN 35) accelerometer power MN MX M1 PSDM 
PSU/ARL  crack in rotating blade    motor power    PSDM 
PSU/ARL  motor-driven bearing    accelerometer power PSDM 
Only the phase-space dissimilarity measures provide forewarning of the machine failures across all of 
these test sequences. This forewarning indication is present for several different kinds of equipment 
failures, as well as for different types of diagnostic data. Moreover, this work developed a statistical 
criterion for the determination of failure onset, based on the sum-of-squares deviation from a straight-line 
fit to the rising trend in PSDM. A goal for the third project year is extension of this statistical criterion 
into a statistical test for forewarning of failure. A second goal is publication of this work in a peer-
reviewed technical journal. 
 
Lessons Learned 
 
Data exchange during this second project year typically involved >10MB for each test sequence. 
Consequently, we were unable to use e-mail attachments, as in the first project year. We found FTP (file 

 



 15

transfer protocol) transfers were slow (many hours), and frequently failed due to network or server 
problems. The most reliable method consisted of compressing the data into ZIP-files, writing the files to 
CD-ROM or DVD disks, and sending the disks via over-night mail. This latter method was used for most 
of the PSU/ARL data, and all of the EPRI data. 
 
A low data sampling rate was used for acquiring some of the data (Otero/Spain and the first PSU test 
sequence). Consequently, the PSDM displayed undesirable variability, but still provided forewarning of 
the failures. ORNL obtained several trial datasets from PSU after initiating their subcontract to assure that 
the data quality (especially the data sampling rate) was adequate for our analysis. ORNL analysis of these 
sample data showed that a sampling rate of >50 kHz provided adequate data quality. Moreover, this 
analysis determined that current and voltage from a digitally controlled electric motor was not appropriate 
for PSDM analysis. For such tests, we focused instead on 3D accelerometer power. 
 
One lesson-learned from the first project year of this work is that a higher data-sampling rate (>50 kHz) is 
needed for the nonlinear analysis. Tests during the first project year used a PdMA Emax system, which is 
a ruggedized laptop computer for data acquisition with a maximum sampling rate of 12,288 Hz for each 
of six (6) channels. Consequently, ORNL procured hardware and software from National Instruments 
Corporation during the first quarter of this second project year with the capability of sampling each of six 
(6) channels at 208 kHz. The system components include a data acquisition board (PCI-MIO-16E-1), 
connector block, cable, and companion software (LabViewTM) at a total cost of $4,180. Table 2 provides 
further details. ORNL installed and tested this data acquisition system on the desktop PC that was 
procured for this project during PY1. 
 
Other Work 
 
Dennis Strickler of Computational Science and Engineering Division worked with Lee Hively to port the 
nonlinear analysis code to ORNL's 184-node IBM SP computer, called “Eagle”. Code changes used the 
Message-Passing Interface (MPI) for parallelization. Measures of dissimilarity for each channel of sample 
data were computed independently on multiple processors. Initial results gave an improvement in 
computational time by a factor of three. Further improvements are possible by parallelizing the base case 
calculations and implementing shared memory parallel programming techniques in individual modules. 
 
We submitted a patent application (PA) to the U.S. Patent Office (USPO) on 8 March 2000, seeking 
protection of the connected phase-space dissimilarity approach. The USPO issued an office action on 16 
January 2002, which was received by the ORNL legal department on 4 February 2002. We sent our 
response to the USPO on 15 May 2002. The attorney of record on this response was a subcontractor, 
Michael McGovern of Quarles and Brady LLP (Milwaukee, Wisconsin). The USPO responded in July 
2002 with a notice that allowed all of our revised claims. 
 
Our research has developed improvements to the phase-space dissimilarity methodology, as described in a 
more recent invention disclosure (ERID #0885), dated 17 October 2000. This ID was elected for 
conversion into a PA on 19 December 2000. We have added further improvements to the methodology, 
and submitted the PA to the USPO on 12 July 2002, also in collaboration with Michael McGovern. 
 
ORNL received an e-mail request on 11 June 2002 from Marty Martinez (Enegetics, Inc.) for a brief 
annual report to be included in an FY02 NERI program summary. We prepared two pages of text plus one 
figure in the prescribed format and sent it to Martinez via e-mail on 18 June 2002. We received a draft 
PDF version of our summary from Martinez via e-mail on 7 August 2002 for our comments, which we 
provided to him on 12 August 2002 also via e-mail. 
 

 



 16

ORNL’s nonlinear paradigm is applicable to forewarning of biomedical events, as well as forewarning of 
machine failures. Specifically, we are using the phase-space dissimilarity approach to analyze scalp EEG 
to forewarn of epileptic seizures. Recent results are documented in a paper to the journal, IEEE 
Transactions on Biomedical Engineering, for a focus issue on epileptic seizure prediction. We received 
the reviewers’ comments on 15 July 2002. We revised the paper in accord with the reviewers’ 
suggestions, and sent the revised paper and our response to TBME on 6 August 2002. Since this work is 
presently unfunded, we recently submitted proposals to two potential sponsors. We have also submitted 
two proposals to analyze EKG data for forewarning of cardiac events.  
 
Lee Hively was contacted by Diana Tallett (Program Administrator for the Nuclear Safety and 
Technology Product Line at Pacific Northwest Laboratory) on 8 October 2001, regarding the total dollar 
value of the present NERI project. Since the abstract for this work is available on the NERI Web site 
(neri.ne.doe.gov), Hively provided the total amount ($1.117M) to Ms. Tallett, who confirmed receipt of 
this information in a 10/9/02 e-mail. 
 
On 28 March 2002, Lee Hively was contacted by Richard Wood (in ORNL’s Nuclear Science and 
Technology Division), who is a collaborator on a different NERI project. Wood requested a short (two 
paragraph) summary of our work for the Nuclear Regulatory Commissioners, which we provided that 
same day. 
 
Issues/Concerns 
 
Lee Hively’s PII-400MHz PC failed late in the afternoon of Friday, 12 July 2002, and was diagnosed on 
Monday, 15 July 2000 with a harddrive crash. This computer was approaching four years old, and 
consequently was replaced with a new computer under ORNL’s Managed Hardware Program 
(procurement initiated on 16 July 2002 with installation on 30 July 2002). The total cost of this 
procurement was $4,813, plus $1,300 for an upgrade to MatLabTM (version 6.5) and $384 for an upgrade 
to Compaq Visual FORTRANTM (version 6.6). Hively’s second office PC was inadequate for compute-
intensive analysis and had been out of commission since May 2002 for upgrades. The first 
motherboard/CPU upgrade failed repeatedly and reproducibly when loaded with a compute-intensive 
problem. Replacement hardware failed in the same way, and also was returned to the vendor. The second 
set of replacement hardware was provided by PC support to Hively on 18 July 2002, and successfully 
reproduced sample results. No subsequent failures have occurred. The total cost of this upgrade was 
$6,108. These failures did not impact the work progress, because in the intervening two weeks (7/15/02 – 
7/30/02), Hively used a PC at home (2GHz P4-XeonTM, 1GB memory, two 73GB SCSI harddrives) for 
data analysis via CompaqTM Visual FORTRAN, visualization via MatLabTM, and report preparation via 
MS-WordTM.  
 
Cost Performance 
 
We received $157,000 for the first project year and $481,000 for the second project year. Total project 
spending through the fourth quarter of the second project year (through the fiscal month of August 2002) 
is $580,761. Our work is on schedule and within the budget, as shown in the figure on page 18. 
 
Subcontract work by Dr. Karl Reichard (Applied Research Laboratory, Pennsylvania State University) 
has proceeded within budget ($90K) and on schedule by providing test sequence data to ORNL. The 
FY02 subcontract payments to PSU were as follows: $8,376.24 on 3/19/02, $22,336.46 on 4/25/02, 
$15,544.31 on 5/16/02, $19,742.81 on 6/19/02, and $23,974.18 on 7/15/02 for a total of $89,974.00. 
ORNL is pleased with PSU’s performance, and plans to use them for FY03 work for this project. 
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During the first project year, we demonstrated the PSDM approach for two test sequences, costing 
$157K, or $78.5K/test. During this second project year, we gave a compelling demonstration of the 
method with nine test sequences for $481K, or $53.4K/test. These values correspond to an efficiency 
improvement of (78.5/53.4) – 1, or nearly 50%.  
 
Several factors have contributed to this efficiency improvement. One innovation is the statistical criterion 
for failure onset (Eqs. 1-4), as an easily computable objective function for the best choice of phase-space 
parameters. We included this criterion in our most recent patent application. The present subcontractor 
(ARL/PSU) is the second contributor to this success by providing high-quality data for the test sequences 
that we have presented here. A third factor is the consistent use of a key lesson-learned from the first year 
of this project, namely requiring a sufficiently high sampling rate as a crucial parameter in the data 
quality. A fourth factor involves refinement of the research-class FORTRAN software implementation of 
the methodology by adding new high-level routines for partial automation of the PSDM analysis, 
rewriting modules for clear algorithmic flow, and combining related modules. A final reason for this 
accomplishment involves development of MatLabTM m-files to automate the search through PSDM results 
for many different parameter choices, and also to provide publication-quality plots of the results. These 
improvements lead to a much more efficient use of the analyst’s time. 
 
The specific goals for the third year’s work are as follows. First, we will work with our subcontractor to 
acquire and analyze additional test-sequence data for further demonstration of the technology for 
forewarning of machine failure. Second, we will work with the subcontractor to assess the impact of this 
technology, in terms of enhanced safety at next-generation nuclear power plants and corresponding cost 
reductions. Third, we will collaborate with operators at ORNL’s High-Flux Isotope Reactor (HFIR) to 
acquire and analyze operational data for representative nuclear-grade equipment. HFIR currently 
experiences several failures per year in this equipment, so forewarnings of failure also would provide an 
immediate safety benefit to HFIR. A fourth task addresses the PSDM analysis over many different phase-
space parameters, presently requiring lengthy runs on modern desktop PCs. We will pursue various 
improvements in the analysis to reduce this time substantially, and expect that these additional 
enhancements will provide even better cost efficiency. 
 
Notwithstanding past and future efficiency improvements, the present forewarning paradigm is limited by 
the central role of the human analyst. An advanced approach is needed to automate many different aspects 
of human expertise. These features include, but are not limited to: (1) assessment of data quality 
indicators; (2) choice of the best data type; (3) comparison of conventional statistics, traditional nonlinear 
measures, and PSDM; (4) development of new nonlinear measures; and (5) statistical test(s) for failure 
forewarning. While the implementation of these steps in fully automated form is beyond the scope of the 
present project, we think that such an approach should be pursued in the future. 
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Status Summary of NERI Tasks for First and Second Project Years 
 

Milestone/task description 
Planned 

completion 
date 

Actual 
completion 

date 
Task 1.1: ORNL set subcontract in place for DE&S 
                DE&S provide preliminary test data to ORNL 
                DE&S construct test plan for accelerated testing 
                DE&S provide datasets to ORNL 

     09/00 
     09/00 
     11/00 
     01/01 

10/00 
02/01 
04/01 
06/01 

Task 1.2: ORNL analyze quality of DE&S test data 
               DE&S provide replacement datasets for any found inadequate 

02/01 
02/01 

06/01 
06/01 

Task 1.3: ORNL perform condition change analysis on data 08/01 08/01 
Task 1.4: ORNL construct library of nonlinear condition change signatures 08/01 08/01 
Task 1.5: ORNL correlate condition change to approaching failure 08/01 08/01 
Task 1.6: ORNL procure new computer 
               ORNL implement nonlinear analysis software on new PC 

08/01 
08/01 

05/01 
06/01 

Task 2.1: PSU provide test data for several seeded-fault sequences 06/02 06/02 
Task 2.2: ORNL evaluate prognostication capability of nonlinear paradigm 08/02 08/02 
Task 2.3: ORNL improve nonlinear paradigm as appropriate 08/02 08/02 
Task 2.4: ORNL develop algorithm for pattern change recognition 08/02 08/02 
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Table 1: Summary of Contacts for Additional Test Data 
 
Contact’s name     e-mail address     Phone number Suggested by     Outcome         
Leonard Bond (PNL)    Leonard.Bond@pnl.gov   509-375-4486  Madeline Feltus (DOE)   check Don Jarrell 
Belle Upadhyaya (UTK)   bupadhya@utk.edu    865-974-5048  Madeline Feltus (DOE)   check Tom Byerly (UTK) 
Frank Rahn (EPRI)    frahn@epri.com     650-855-2037  Madeline Feltus (DOE)   provided other contacts 
Lance Agee (EPRI)    lagee@epri.com     650-855-2106  Madeline Feltus (DOE)   check Frank Rahn 
Nathan Siu (NRC)    nos@nrc.gov      301-415-6925  Madeline Feltus (DOE)   provided other contacts  
Steven Arndt (NRC)    saa@nrc.gov      301-415-6502  Madeline Feltus (DOE)   provided other contacts 
Bob Uhrig (UTK)    ruhrig@utk.edu          Steven Arndt (NRC)    check Wes Hines   
Prof. Moran (Ohio State)           614-292-6064  Steven Arndt (NRC)    provided other contacts  
Prof. Jack Collins (Ohio State)          614-292-6094  Prof. Moran (Ohio State)  unable to participate 
Kent Hansen (MIT)             617-253-7384  Nathan Siu (NRC)    provided other contacts 
George Apostolakis (MIT)  apostola@mit.edu    617-252-1570  Kent Hansen (MIT)    no suggestions 
Jim Lynch (INPO)             770-644-8000  Kent Hansen (MIT)    no response 
Ken Barry (EPRI)             704-547-6040  Frank Rahn (EPRI)    check Frank Rahn 
Ken Huffman (EPRI)            704-547-6055  Frank Rahn (EPRI)    no response 
Richard Wood (ORNL)   w15@ornl.gov     865-574-5578  Leonard Bond (PNL)    check Bel Upadhyaya (UTK) 
Leonard Loflin (EPRI)   leloflin@epri.com    704-547-6010  Ken Barry (EPRI)    interested 
Tom Byerly (UTK/MCR)           865-974-9625  Belle Upadhyaya (UTK)   presentation to MRC at UTK 
Wes Hines (UTK)    hines@utkux.utcc.utk.edu  865-974-6561  Bob Uhrig (UTK)    sample rate too low 
Darryl Cox (ORNL)                  Ray Holdaway (ORNL)   no response 
Al Wilks (Smart Signal)   adwilks@smartsignal.com       presentation to MRC    interested 
Bill Drake (Wilcoxon Res)  bdrake@wilcoxon.com   301-216-3020  presentation to MRC    interested 
Bill Adams  (Fuller)                  presentation to MRC    interested 
Sam Robinson (Y12 Plant)           865-574-1838  previous collaboration   check Al Akerman 
Roger Kershaw (MachinExpert)          865-637-1760  Cecil Presnell (IdentiChem)  interested 
Ken Piety (CSI)              865-675-2110  Ray Garvey (CSI)    only 4096-point datasets 
Amulya Garga (PSU/ARL)           814-863-5841  Amir Shirkhodaie (Tn State)  check Karl Reichard 
Tim Rangongo (Iris Power)           416-620-5600  Madeline Feltus (DOE)   check Foster-Miller Technologies 
Gordon Hirschman (FMT)  ghirschman@fosmiltech.com      Tim Rangongo (Iris Power)  no response 
Jan Stein (EPRI)     jstein@epri.com     650-855-2390  Madeline Feltus (DOE)   EPRI provided data on CD 
Don Jarrell (PNL)    don.jarrell@pnl.gov    509-372-4096  Leonard Bond (PNL)    promised to provide data 
Mark Linn (HFIR/ORNL)  linnma@ornl.gov     865-574-4617  Dwayne Kilpatrick (ORNL)  provided motor specs 
Amir Shirkhodaie (Tn State U) ashirkhodaie@tnstate.edu  615-963-5396  MARCON2001 proceedings provided data 
Karl Reichard (PSU)    kmr5@psu.edu     814-863-7681  Amir Shirkhodaie (Tn State U) providing data 
Al Akerman (ORNL)   ima@ornl.gov     865-406-6589  Sam Robinson (Y12 Plant)  provided data 
Maria Elena Otero (Spain)  memontes@iqn.upv.es        Raphael Peres (ORNL)   provided data 
Michael House (GE)    Michael.house@ps.ge.com  518-385-4098  Jan Stein (EPRI)     willing to share data
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Table 2: Further Details of New Data Acquisition System 
 

Brief Description of Item       Cost ($) Additional Details                   
1) PCI-MIO-16E-1 Multichannel IO Board   1,795 Resolution    = 12 bits 
    (part number 777305-01)         Sampling Rate   = 1.25 MHz total or 208 kHz for each of 6 channels 
                 Voltage range   = +/-10V maximum or +/- 0.05V minimum 
                 Absolute accuracy  < 0.045% 
                 Input impedance  = 100 Gohms in parallel with 100 pF 
                 Warmup time   = 15 minutes 
                 Calibration interval = 1 year 
                 Operating temperature = 0 – 55 °C 
                 Storage temperature = -20 – 70 °C 
                 Relative humidity  = 10 – 90% noncondensing 
 
2) SH68-68-EP (1 meter shielded cable)        95  provide connection from item #1 to item #3 
     (part number 184749-01) 
 
3) SCB-68 Shielded IO connector block      295  provide connection points for current and voltage probes 
     (part number 776844-01) 
 
4) LabViewTM full development software       1,995 for Windows 2000/NT/Me/9x (English) 
     (part number 776670-03)         graphical user interface and programming environment for data acquisition/analysis 
 
TOTAL COST                  4,180 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                   Ball 
 
Outer race 
 
Inner race 
 
 
 
 
 
 
              Cage 
 
 

Figure 1: Motor-bearing system (top), bearing details (bottom left), and bear assembly (bottom right).
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Figure 2: Plots of typical baseline data versus time from the equipment in Fig. 1. Top plot shows acoustic 
data. Second plot down shows accelerometer data. Third plot down shows accelerometer data. Bottom 
plot shows another channel of accelerometer data. Vertical axes in all four plots are arbitrary units. 
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Figure 3: Two dimensional phase-space plots for the acoustic data in the top plot of Fig. 2. The abrupt 
spikes in that time serial data cause the bow-tie and cross-shaped phase-space portraits. The lack of 
change for L≥2 indicates that this data is under-sampled. 
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Figure 4: Typical baseline EPRI data versus time from the Allis Chalmers motor. Top three plots show 
the three-phase voltages (Vi). Middle three plots show the three-phase currents (Ii). The sinusoidal 
variation in these plots corresponds to 60 Hz. The bottom plot shows instantaneous power, P, as the sum 
of the products of the three-phase currents times the corresponding voltages. See text for discussion. 
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Figure 5: Plots of the linear measures for the air-gap seeded-fault power data through the test sequence. 
Top plot shows various linear measures of instantaneous power, P: minimum (Pn) as the bottom curve, 
maximum (Px) as the top curve, average plus one standard deviation (P + σP) as the middle top curve, and 
average minus one standard deviation (P - σP) as the middle bottom curve.  Second plot down shows 
skewness (solid) and kurtosis (- -) in the instantaneous power. Third plot down shows the number of time 
steps per cycle in the instantaneous power. Bottom plot shows the lag in time steps, corresponding to the 
first zero in the autocorrelation function. See text for discussion. 
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Figure 6: Plots of three conventional nonlinear measures for the air-gap seeded-fault power data through 
the test sequence. Top plot shows the location (in time steps) of the first minimum in the mutual 
information function. The middle plot shows the correlation dimension (D). The bottom plot shows the 
Kolmogorov entropy (K). Error bars in the middle and bottom plots correspond to the 95% confidence 
interval. See text for discussion. 
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Figure 7: Two-dimensional phase-space reconstructions for typical artifact-filtered baseline power data 
versus time from the Fig. 4. The horizontal axis is power, PJ, at time tJ. The vertical axis is power, PJ+λ at 
later (lagged) time tJ+λ. Each plot corresponds to progressively larger time lag, λ, beginning at twenty-one 
(21) time steps in the upper left plot. The lag increases by one time step as the plots progress from left to 
right. The lag also increases as the plots descend from top to bottom, as shown by the “λ=nn” designation 
in the upper left corner of each plot, where “nn” denotes the particular value of lag. Successive plots 
demonstrate the “unfolding” of the phase-space representation. See text for further discussion. 
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Figure 8: Plots of the four nonlinear dissimilarity measures for the airgap-offset seeded-fault power data, 
with the following phase-space parameters: d=3, S=56, w=573, λ=88. Dataset #1 is for the nominal (no 
fault) state. Datasets #2-3 are for two different airgap-offset faults. See text for further discussion. Stars 
(*) show the dissimilarity values with the straight linear added as an aid for interpretation of the graphs. 
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Figure 9: Plots of the linear measures for the broken-rotor seeded-fault power data through the test 
sequence. Top plot shows various linear measures of instantaneous power, P: minimum (Pn) as the bottom 
curve, maximum (Px) as the top curve, average plus one standard deviation (P + σP) as the middle top 
curve, and average minus one standard deviation (P - σP) as the middle bottom curve.  Second plot down 
shows skewness (solid) and kurtosis (- -) in the instantaneous power. Third plot down shows the number 
of time steps per cycle in the instantaneous power. Bottom plot shows the lag in time steps, corresponding 
to the first zero in the autocorrelation function. See text for discussion. 
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Figure 10: Plots of three conventional nonlinear measures for the broken-rotor seeded-fault power data 
through the test sequence. Top plot shows the location (in time steps) of the first minimum in the mutual 
information function. The middle plot shows the correlation dimension (D). The bottom plot shows the 
Kolmogorov entropy (K). Error bars in the middle and bottom plots correspond to the 95% confidence 
interval. See text for discussion. 

 



 30

 
Figure 11: Plots of the four nonlinear dissimilarity measures for the broken-rotor seeded-fault power 
data. Dataset #1 is for the nominal (no fault) state. Dataset #2 is for the 50% cut in one rotor bar. Dataset 
#3 is for the 100% cut in one rotor bar. Dataset #4 is for two cut rotor bars. Dataset #5 is for four cut rotor 
bars. The exponential rise in the severity of the seeded faults is shown as an almost linear rise (solid line) 
in the logarithm of all four dissimilarity measures (*) for the chosen set of phase-space parameters. 
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Figure 12: Typical baseline data versus time from the GE motor. Top three plots show the three-phase 
voltages (Vi). Middle three plots show the three-phase currents (Ii). Note the very rich dynamical features 
in this raw data, as well as in the instantaneous power (bottom plot). 
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Figure 13: Plots of the linear measures for the turn-to-turn short seeded-fault power data through the test 
sequence. Top plot shows various linear measures of instantaneous power, P: minimum (Pn) as the bottom 
curve, maximum (Px) as the top curve, average plus one standard deviation (P + σP) as the middle top 
curve, and average minus one standard deviation (P - σP) as the middle bottom curve.  Second plot down 
shows skewness (solid) and kurtosis (- -) in the instantaneous power. Third plot down shows the number 
of time steps per cycle in the instantaneous power. Bottom plot shows the lag in time steps, corresponding 
to the first zero in the autocorrelation function. See text for discussion. 
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Figure 14: Plots of three conventional nonlinear measures for the turn-to-turn short seeded-fault power 
data through the test sequence. Top plot shows the location (in time steps) of the first minimum in the 
mutual information function. The middle plot shows the correlation dimension (D). The bottom plot 
shows the Kolmogorov entropy (K). Error bars in the middle and bottom plots correspond to the 95% 
confidence interval. See text for discussion 
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Figure 15: Plots of the four nonlinear dissimilarity measures for the turn-to-turn short seeded-fault power 
data. Dataset #1 is for the nominal (no fault) state. Dataset #2 is for the 2.7-ohm short. Dataset #3 is for 
the 1.35-ohm short. The monotonic rise in the severity of the seeded faults is shown as an almost linear 
rise (solid line) in the four dissimilarity measures (*) for the chosen set of phase-space parameters. 
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Figure 16: Conventional statistical measures versus dataset number for the Polytechnic University of 
Valencia imbalance test sequence: (a) minimum (MIN), maximum (MAX), absolute average deviation 
(a), and sample standard deviation (σ); (b) skewness; (c) kurtosis; (d) time of time steps per cycle; (e) first 
zero (in time steps) of auto-correlation function. See text for discussion. 
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Figure 17: Plots of three traditional nonlinear measures versus time for the Polytechnic University of 
Valencia imbalance test sequence: (top) correlation dimension (D); (middle) Kolmogorov entropy (K); 
(bottom) location of the first minimum (in time steps) in the mutual information function (M1). See text 
for discussion. 
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Figure 18: Phase-space dissimilarity measures (not renormalized) versus dataset number for the 
Polytechnic University of Valencia imbalance test: (top) χ2, (second down) χc

2, (third down) L, (bottom) 
Lc. The values of A and B in each subplot correspond to the slope and y-intercept for the least-squares 
straight line. See text for discussion. 
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Figure 19: Upper picture shows the Mechanical Diagnostics Test Bed at PSU/ARL, showing (from left to 
right) the 30 HP drive motor, torque cell, gear box, second torque cell, and 75HP electrical generator 
(load). Lower plot shows a typical segment of data for load torque (in arbitrary units) versus time from 
the MDTB, sampled at 1 kHz. 
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Figure 20: Plots of the linear measures of the load torque from the PSU/ARL MDTB test sequence. Top 
plot shows various linear measures of instantaneous torque, T: minimum (Tn) as the bottom curve, 
maximum (Tx) as the top curve, average plus one standard deviation (T + σT) as the middle top curve, and 
average minus one standard deviation (T - σT) as the middle bottom curve.  Second plot down shows 
skewness (solid) and kurtosis (- -) in the instantaneous torque. Third plot down shows the number of time 
steps per cycle in the torque. Bottom plot shows the lag in time steps, corresponding to the first zero in 
the autocorrelation function, which varies from zero to 539. See text for discussion. 
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Figure 21: Plots of three conventional nonlinear measures for the load torque data through the PSU/ARL 
MDTB test sequence. Top plot shows the location (in time steps) of the first minimum in the mutual 
information function. The middle plot shows the correlation dimension (D). The bottom plot shows the 
Kolmogorov entropy (K). Error bars in the middle and bottom plots correspond to the 95% confidence 
interval. See text for discussion. 
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Figure 22: Plots of the four nonlinear dissimilarity measures for the PSU/ARL MDTB test sequence 
versus Dataset number. Datasets #1-5 are the basecases. These results are for the following phase-space 
reconstruction parameters: d=16, S=3, and λ=61. See text for discussion. 
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Figure 23: Plots of raw tri-axial accelerometer data from RUN33 of the PSU MDTB test sequence versus 
time: left column (A1), center column (A2), and right column (A3). Each row (down) of subplots 
corresponds to five-fold greater resolution in time.  
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Figure 24: Conventional statistical measures of tri-axial acceleration data for each snapshot at ten-minute 
intervals: (top row) minimum (An), absolute average deviation (a), sample standard deviation (σ), and 
maximum (Ax); (second row from top) skewness (-) and kurtosis (- -); (third row from top) number of 
time steps per cycle; (bottom row) first zero (in time steps) in the autocorrelation function. 
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Figure 25: Plots of the tri-axial accelerometer power versus time (RUN33 of the PSU MDTB 
experiment) at three successively faster time scales. See text for discussion. 
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Figure 26: Conventional statistical measures of the accelerometer power versus dataset number for 
RUN33 of the PSU MDTB test sequence: (a) minimum (Pn), maximum (Px), absolute average deviation 
(a), and standard deviation (σ); (b) skewness; (c) kurtosis; (d) number of time steps per cycle; (e) first 
zero (Z1) in the autocorrelation function. See text for discussion. 
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Figure 27: Plots of three conventional nonlinear measures versus time from RUN33 of PSU MDTB test 
sequence: (top) correlation dimension (D); (middle) Kolmogorov entropy (K); (bottom) location (in time 
steps) of the first minimum in the mutual information function (M1). See text for discussion. 
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Figure 28: Plots of the four nonlinear dissimilarity measures versus dataset number in the test sequence 
for RUN33 of the PSU MDTB gearbox failure sequence for d=2, S=274, and λ=1. Results for the two bad 
datasets (#119 and 266) have been replaced by locally averaged values. See text for discussion.  
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Figure 29: Maximum value of the χ2 statistic versus the number (n) of sequential points from the sample 
distribution for (bottom) a normal distribution with zero mean and unity sample standard deviation; 
(middle) composite measure, Ci, of condition change from the 200 datasets that span the straight-line fit; 
(top) composite measure, Ci, of condition change during failure onset (datasets #394-400). The middle 
and top curves use the same analysis parameters as in Fig. 28. See text for discussion. 
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Figure 30: Plots of the tri-axial accelerometer power versus time (RUN35 of the PSU MDTB 
experiment) at four successively faster time scales. See text for discussion. 
 
 

 



 50

 
Figure 31: Conventional statistical measures of the accelerometer power versus dataset number for 
RUN35 of the PSU MDTB test sequence: (a) minimum (Pn), maximum (Px), absolute average deviation 
(a), and standard deviation (σ) of accelerometer power; (b) skewness of time-serial power; (c) kurtosis of 
power; (d) number of time steps per cycle; (e) first zero (Z1) in the autocorrelation function. See text for 
discussion. 
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Figure 32: Plots of three conventional nonlinear measures versus time from RUN35 of PSU MDTB test 
sequence: (top) correlation dimension (D); (middle) Kolmogorov entropy (K); (bottom) location (in time 
steps) of the first minimum (M1) in the mutual information function. See text for discussion. 
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Figure 33: Plots of the four nonlinear dissimilarity measures versus dataset number in the test sequence 
for RUN35 of the PSU MDTB gearbox failure sequence for d=2, S=274, and λ=1. See text for discussion.  
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Figure 34: Maximum value of the χ2 statistic versus the number (n) of sequential points from the sample 
distribution for (bottom) a normal distribution with zero mean and unity sample standard deviation; 
(middle) composite measure, Ci, of condition change from the 100 datasets that span the straight-line fit; 
(top) composite measure, Ci, of condition change during failure onset (datasets #820-831). The middle 
and top curves use the same analysis parameters as in Fig. 29. See text for discussion. 
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Figure 35: Plots of the four data channels from PSU TORSION experiment at three successively faster 
time scales: (left two columns) horizontal and vertical acceleration; (third column from the left) AC-
coupled motor power; (right-most column) DC-coupled motor power. See text for discussion. 
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Figure 36: Conventional statistical measures of the DC motor power versus dataset number for the PSU 
TORSION experiment: (top) minimum (Pn), maximum (Px), absolute average deviation (a), and standard 
deviation (σ); (second from top) skewness and kurtosis of power; (third from top) number of time steps 
per cycle; (bottom) first zero (Z1) in the autocorrelation function. See text for discussion. 
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Figure 37: Plots of three conventional nonlinear measures versus time from PSU TORSION experiment: 
(top) correlation dimension (D); (middle) Kolmogorov entropy (K); (bottom) location (in time steps) of 
the first minimum (M1) in the mutual information function. See text for discussion. 
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Figure 38: Plots of the four nonlinear dissimilarity measures (top four) and their sum (bottom) versus 
dataset number in the test sequence for PSU TORSION experiment for d=4, S=2, and λ=245. See text for 
discussion. 
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Figure 39: Plots of sample accelerometer power from the PSU BEARING experiment at three 
successively faster time scales. See text for discussion. 
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Figure 40: Conventional statistical measures of the accelerometer power versus dataset number for the 
PSU BEARING experiment: (top) minimum (Pn), maximum (Px), absolute average deviation (a), and 
standard deviation (σ); (second from top) skewness and kurtosis of power; (third from top) number of 
time steps per cycle; (bottom) first zero (Z1) in the autocorrelation function. See text for discussion. 
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Figure 41: Plots of three conventional nonlinear measures versus time from PSU BEARING experiment: 
(top) correlation dimension (D); (middle) Kolmogorov entropy (K); (bottom) location (in time steps) of 
the first minimum (M1) in the mutual information function. See text for discussion. 
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Figure 42: Plots of the four nonlinear dissimilarity measures (top four) and their sum (bottom) versus 
dataset number in the test sequence for PSU BEARING experiment for d=4, S=2, and λ=73. See text for 
discussion. 
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Figure 43: Maximum value of the χ2 statistic versus the number (n) of sequential points from the sample 
distribution for (bottom) a normal distribution with zero mean and unity sample standard deviation; 
(middle) composite measure, Ci, of condition change from the 100 datasets that span the straight-line fit; 
(top) composite measure, Ci, of condition change during failure onset (datasets #795-804). 
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APPENDIX A: Description of Analysis Methods 
 
This Appendix is organized as follows. Section A.1 describes the method for removal of artifacts from the 
data. Section A.2 discusses conventional statistical measures for time-serial analysis. Section A.3 
describes three traditional nonlinear measures for our analysis. Section A.4 explains ORNL’s nonlinear 
phase-space dissimilarity measures. 

A.1 ARTIFACT REMOVAL 

Data frequently include artifacts, such as sinusoidal variations in three-phase voltage and current. We 
remove essentially all of these artifacts with a novel zero-phase quadratic filter [Hively et al., 1995].  This 
filter uses a moving window of 2w + 1 points of raw data, ei, with the same number of data points, w, on 
either side of a central point.  We fit the data to a quadratic equation, F(ti) = a1Ti

2 + a2Ti + a3, with Ti = ti – 
tc, and tc the time at the central point of the moving window.  We obtain the best fit to the data by 
minimizing the function, Ψ=Σi [F(t) – ei]2. The sum is over the 2w + 1 points in the moving window.  The 
minimum in Ψ is found from the condition ∂Ψ/∂ak = 0, which yields three linear equations in three 
unknowns.  The window-averaged signal is the fitted value at the central point, F(tc = ti) = a3. The sums 
over odd powers of Ti are zero; symmetric sums over even powers of Ti (over i from –w to w) can be 
converted to sums from 1 to w, giving a window-averaged solution for the artifact signal, 
            w     w 

   F(t = tc) = [3(3w2 + 3w – 1)Σ ei+c – 15Σ i2 ei+c] / (4w2 + 4w – 3)(2w + 1).    (A.1) 
               i=-w    i=-w 

The sums in this last equation are over i from –w to w, with sums over even powers of i explicitly 
evaluated with standard formulas for Σi i2 and Σi i4 (Gradshteyn and Ryzhik, 1965).  The effort to evaluate 
Eq. (A.1) can be reduced further by computing the sums initially with c = w + 1, and then using 
recursions thereafter for c > w + 1 [Hively et al., 1995].  Application of this filter to the N-point set of raw 
data, ei, yields N – 2w points of artifact data, fi = F(tc = ti). The residue, xi = ei – fi, has essentially no 
artifact content. Subsequent analysis uses only the artifact-filtered machine data, xi. 
 
A.2 CONVENTIONAL STATISTICAL MEASURES 

Analysis of time serial data begins with the collection of a process-indicative scalar signal, x, from a 
dynamical system whose dimensionality, structure, parameters, and regime are usually unknown.  This 
signal is sampled at equal time intervals, τ, starting at the initial time, t0, and yields a sequence of N 
points, xi = x(t0 + iτ).  Several linear measures are useful for characterizing the gross features of this data.  
The first is the mean, x , or average over the N data points: 
                N 

                x  = Σ xi / N.             (A.2) 
               i=1 

The second is the sample standard deviation (σ), which follows from Eq. (A.2): 
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Equation (A.3) is the second moment about the mean, implying that higher moments are available.  Thus, 
a third linear measure is the third moment about the mean, called skewness, s: 
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A fourth linear measure is the fourth moment about the mean, called kurtosis, k: 
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Typical process data have significant values for skewness and kurtosis, but Gaussian random processes 
have values that are not significantly different from zero [Abramowitz and Stegun, 1965].  A large 
positive (negative) value of skewness corresponds to a longer, fatter tail of the data distribution about the 
mean to the right (left).  Kurtosis measures the amount of flattening (negative k) or excess peakedness 
(positive k) about the mean.  Another measure applies to both linear and nonlinear systems, and involves 
counting the number of times, nc, that the signal crosses the mean value.  More specifically, one-half of a 
wave period is delimited by two successive mean crossings.  For nc >>1, the average number of time steps 
per wave cycle (m) as: 

m = N/[(nc - 1)/2] = 2N/(nc –1) ≈ 2N/nc .           (A.6) 
 
This last measure indicates the average periodicity in the signal, or the inverse of the average frequency.  
Analysis of typical data shows that these measures provide little, if any, discrimination for detection of 
condition change.  We include these measures for the sake of completeness and to show that linear 
measures are inadequate for prognostication. 

A.3 TRADITIONAL NONLINEAR MEASURES 
 
Nonlinear analysis uses the same sequence of time serial data, xi, to reconstruct the process dynamics.  In 
particular, phase-space (PS) reconstruction [Eckmann and Ruelle, 1985] uses d-dimensional time-delay 
vectors, y(i) = [xi, xi+λ , .  .  .  , xi+(d–1)λ], for a system with d active variables and time lag, λ.  The choice of 
lag and embedding dimension, d, determines how well the PS reconstruction unfolds the underlying 
dynamics from a finite amount of noisy data.  Takens [1981] found that, for a d-dimensional system, 2d + 
1 dimensions generally results in a smooth, non-intersecting reconstruction.   Sauer et al.  (1991) showed 
that, using ideal data (i.e.  no noise and infinite precision), the first integer greater than the correlation 
dimension is often sufficient to reconstruct the system dynamics; this result has been confirmed by 
computing the embedding dimension via the false nearest-neighbors method [Abarbanel and Kennel, 
1993; Abarbanel et al., 1993; Cao 1997].  However, too high an embedding dimension can result in over-
fitting for real data with finite length and noise. We further note that different observables of a system 
contain unequal amounts of dynamical information [Letellier et al., 1998], implying that PS 
reconstruction could be easier from one variable, but more difficult or even next to impossible from 
another. Our analysis seeks to balance these caveats within the constraints of finite-length noisy data. 
 
Various nonlinear measures have been defined to characterize process dynamics using the PS 
reconstruction.  [Kantz and Schreiber, 1997; Rezek and Roberts, 1998]. We choose three of these 
nonlinear measures, against which we compare the dissimilarity indicators. In particular, we use: the first 
minimum in the mutual information function as a measure of de-correlation time, the correlation 
dimension as a measure of dynamic complexity, and the Kolmogorov entropy as a measure of 
predictability.  For the reader’s convenience, we briefly describe these three measures next. 
 
The mutual information function (MIF) is a nonlinear version of the (linear) autocorrelation and cross-
correlation functions and was originally developed by Shannon and Weaver (1949) with subsequent 
application to time series analysis by Fraser and Swinney (1986). The MIF measures the average 
information (in bits) that can be inferred from one measurement about a second measurement and is a 
function of the time delay between the measurements.  Univariate MIF measures predictability within the 
same data stream at different times.  Bivariate MIF measures predictability of one data channel, based on 
measurements in a second signal at different times.  For the present analysis, we use the first minimum in 
the univariate MIF, M1, to indicate the average time lag that makes xi independent of x 

j .  The MIF, I(q,r), 
and system entropy, H, are defined by 
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For a window of N points, we denote the Q set of data measurements by q1, q2, .  .  , qN, with associated 
occurrence probabilities P(q1), P(q2), .  .  .  , P(qN).  R is a second set of measurements, r1, r2, .  .  .  , rN, 
with a time delay relative to the qi values, with occurrence probabilities P(r1), P(r2), .  .  .  , P(rN).  The 
function P(qi, rj) denotes the joint probability of both states occurring simultaneously.  H and I are 
expressed in units of bits if the logarithm is taken in base two. 
 
The maximum-likelihood correlation dimension, D, is [Takens 1984; Schouten et al.  1994a]: 
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where M is the number of randomly sampled point pairs; δij is the maximum-norm distance between the 
(randomly chosen) i – j point pairs, as defined in Eq. (A.12) below.  The distance (scale length) δn is 
associated with noise as measured from the time serial data.  Note that the distances are normalized with 
respect to a nominal scale length δ0, which is chosen as a balance between sensitivity to local dynamics 
(typically at δ0

 ≤5a) and avoidance of excessive noise (typically at δ0
 ≥ a).  Here, the symbol a denotes the 

absolute average deviation as a robust indicator of variability [Schouten et al.  1994a] in the data, 
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where x is the mean of xi over the window of N points.  The distances δij are defined by 
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where m is the average number of points per cycle, as determined by Eq. (A.6). 
 
The Kolmogorov entropy, K, measures the rate of information loss per unit time, or (equivalently) the 
degree of predictability. Positive, finite entropy is generally considered a clear demonstration that the 
time series and its underlying dynamics are chaotic. A very large entropy indicates a stochastic 
(nondeterministic) and therefore totally unpredictable phenomenon. The K-entropy is estimated from the 
average divergence time for pairs of initially close orbits. More precisely, the entropy is obtained from the 
average time for two points on an attractor to go from an initial separation δ ≤ δ0 to a separation of more 
than that distance (δ  > δ 

0). We use the maximum-likelihood K-entropy of Schouten et al.  (1994b), 
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with bi as the number of time steps for two points, initially within δ ≤ δ0,  to diverge to δ  > δ 

0.  The 
symbol fs denotes the data-sampling rate. 
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There are several problems associated with the use of these measures for detection of dynamical change.  
The most serious is that these nonlinear measures are expressed as a sum or integral over (a region of) the 
PS, thus averaging out all dynamical details into a single number. Two (very) different dynamical regimes 
may lead to very close, or even equal measures.  The situation is even murkier for noisy dynamics, in 
which case reliable determination of the nonlinear measures is next to impossible.  The second difficulty 
arises from the definitions of K-entropy and correlation dimension in the limit of zero scale length.  
However, all real data have noise and even noiseless model data is limited by the finite precision of 
computer arithmetic.  Thus, we choose a finite scale length that is somewhat larger than the noise (δ0 = 
2a), at which to report the values of K and D, corresponding to finite-scale dynamic structure.  
Consequently, the calculated values of K and D have smaller values than expected for the zero-scale-
length limit (δ0 → 0) and cannot capture dynamical complexity at length scales smaller than δ0.  A third 
difficulty arises from the definition of these nonlinear measures as functionals of the distribution 
functions.  Some of these functionals do not satisfy all the mathematical properties of a distance.  In 
particular, for some of them, symmetry and the triangle inequality may be violated [Quin Quiroga et al., 
2000].  Therefore, these measures cannot define a metric in the mathematical sense.  They may indicate 
change, although only in a sense that has to be made precise for each situation. 
 

A.4 PHASE-SPACE DISSIMILARITY MEASURES 
 
The traditional nonlinear measures described in the previous section characterize global features of the 
dynamics, and can clearly distinguish between regular and chaotic dynamics.  However, they do not 
reveal slight dissimilarities between dynamical states.  The same is true for other global indicators, such 
as fractal dimension, Lyapunov exponents, etc. This lack of discrimination occurs because such 
traditional measures are based on averaged or integrated features of the dynamics over the attractor, 
which provide a global picture of long-term dynamical behavior.   
 
Greater discrimination is possible by more detailed analysis of the reconstructed dynamics.  The natural 
(or invariant) measure on the attractor provides a more refined representation of the reconstruction, 
describing the visitation frequency of the system dynamics over the PS.  We obtain a useful discrete 
representation of the invariant measure from time serial data as follows.  We first represent each signal 
value, xi, as a symbolized form, si, that is, one of S different integers, 0,1, .  .  .  , S–1, 
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Here, the function (INT) converts a decimal number to the closest lower integer, and xmin and xmax denote 
the minimum and maximum values of xi, respectively, over the base case (reference data).  We previously 
used [Hively et al., 1999; Gailey et al., 1999; Hively et al., 2000] the minimum and maximum values over 
both the base case and test case (data to be tested for departure from the base case).  However, in real- or 
near-real-time analyses, only base case extrema are actually known.  We require that si(xi = xmax) = S – 1 
in order to maintain exactly S distinct symbols.  Consequently, Eq. (A.15) creates symbols that are 
uniformly distributed between the minimum and maximum in signal amplitude (uniform symbols). 
 
An alternative is equiprobable symbols.  These symbols are formed by ordering the base case time-serial 
data from the smallest to largest value.  The first N/S of these ordered data values correspond to the first 
symbol (0).  Ordered data values (N/S)+1 through 2N/S correspond to the second symbol (1), and so on up 
to the last symbol, S-1.  Consequently, equiprobable symbols have non-uniform partitions in the signal 
amplitude so that each symbol has the same occurrence frequency (N/S) of xi values.  Much structure is 
inherent in uniform symbols before beginning the PS reconstruction, but no PS structure arises from 
equiprobable symbols.  Thus, a key advantage of equiprobable symbols is that dynamical structure arises 
only from the phase-space reconstruction, as described below.  Large negative and large positive values 
of xi have little affect on equiprobable symbolization, but dramatically change the partitions for uniform 
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symbols.  Moreover, information theoretic measures of the PS-DF (e.g., mutual information function) are 
a smooth function of the reconstruction parameters for equiprobable symbols, but are noisy functions of 
these same parameters for uniform symbols.  We find that equiprobable symbols provide better 
discrimination of condition change than uniform symbols. 
 
The phase-space is partitioned into Sd hypercubes or bins by the symbolization process.  We then count 
the number of PS points occurring in each bin to obtain the distribution function (DF) as a discretized 
density on the attractor.  We denote the population of the ith bin of the distribution function, Qi, for the 
base case, and Ri for a test case, respectively.  For infinitely precise data, this representation has been used 
in Grebogi et al.  (1988). The choice of parameters (S, N, and d) depends not only on the system, but also 
on the specific data under consideration.  In the preliminary phase of the analysis, we systematically 
varied each parameter with the others fixed, to obtain optimum sensitivity of the measures to changes in 
system dynamics for each class of data.  After achieving optimal sensitivity, the values of the parameters 
were kept fixed.   
 
Initial analysis used an embedding window, M1 = (d – 1)λ, based on the first minimum in the mutual 
information function, M1 [Fraser and Swinney, 1986].  This choice of time delay provides maximal 
information for the reconstruction of the phase space dynamics.  Then, we set λ = INT[0.5 + M1/(d – 1)] 
to obtain an integer value for the lag when M1 is not evenly divisible by d – 1.  The reconstruction 
requires that λ ≥ 1, thus constraining the largest value of dimensionality to d ≤ 2M1 + 1 from the above 
formula. Subsequently, we have found that this choice of time-delay lag is not the best for failure 
forewarning. Rather, we vary λ as one of several parameters that determine the goodness of the PSDM in 
providing forewarning of failure. 
 
After reconstruction (unfolding) of the dynamics, the test case is compared to the base case.  Diks et al.  
(1996) measured differences between delay vector distributions by the square of the distance between two 
DFs.  Schreiber (1997 and 1999) measured dissimilarity via the Euclidean distance between points of the 
attractor.  These measures of dissimilarity only accounts for the geometrical shape and location of the 
attractor.  Manuca and Savit (1996 and 1998) described dissimilarity via ratios of the correlation integral 
over the DF.  This is essentially the correlation dimension, as discussed above.  Moreover, these papers 
discuss dissimilarity measures from the perspective of non-stationarity, while our focus is on 
quantification of condition change. In particular, we measure the difference between Qi with Ri by the χ2 
statistics and L1 distance,  
 

( ) ( )∑ +−=
i

iiii RQRQ ,/22χ
           (A.16) 

 

∑ −=
i

ii RQL ,
             (A.17) 

 
where the summations in both equations run over all of the populated PS cells.  The choice of these 
measures is based on the following considerations.  The χ2 statistic is one of the most powerful, robust, 
and widely used statistical tests to measure discrepancies between observed and expected frequencies.  
The χ2 statistic is obviously symmetric, but does not always satisfy the triangle inequality, so it does not 
define a distance in the mathematical sense.  The L1 distance is the natural metric for distribution 
functions since it is directly related to the total invariant measure on the attractor and does define a bona 
fide distance.  Therefore, these measures account for changes in the geometry, shape, and visitation 
frequency of the attractor and can be viewed as somewhat complementary.  Obviously, calculation of 
these measures in a consistent fashion, requires that the base case and test case contain the same number 
of points, identically sampled; otherwise the distribution functions have to be properly rescaled.   
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We extended the previous analysis in a manner that is naturally compatible with the underlying dynamics.  
By connecting successive PS points as prescribed by the dynamics, y(i) → y(i + 1), we obtain a discrete 
representation of the process flow [Abarbanel, 1996].   One can form a 2d-dimensional vector, Y(i) = 
[y(i), y(i + 1)], by adjoining two successive vectors from the d-dimensional reconstructed PS, lives in a 
2d-dimensional space, that we call the connected phase space (CPS).  As before, Q and R denote the CPS 
DFs for the base case and test case, respectively.  We define the measures of dissimilarity between these 
two CPS DFs, as before, via the L1-distance and χ2 statistic, [Hively et al., 1999, 2000, 2000a; 
Protopopescu, et al., 2001 and references therein]  
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The subscript c indicates the connected distribution function measure.  We note that the value λ = 1 
results in d – 1 components of y(i + 1) being redundant with those of y(i), but we allow this redundancy to 
accommodate other data such as discrete points from two-dimensional maps.  The CPS measures have a 
higher discriminating power than their non-connected counterparts.  Indeed, we can prove that the 
measures defined in Eqs. (A.16)–(A.19) satisfy the four inequalities [Hively et al., 2000]: χ2 ≤ L, χc

2 ≤ Lc,  
L ≤ Lc , and χ2 ≤ χc

2. Alternative forms are: χ2 ≤ L ≤ Lc and χ2 ≤ χc
2 ≤ Lc. 

 
The χ2 statistic requires statistical independence between various samples.  However, the PS points 
depend on one another due to reconstruction from time delay vectors with dynamical structure [Diks et 
al., 1996].  The resulting statistical bias is avoidable by averaging contributions to Eqs.  (A.16)-(A.19) 
over values of y(j) or Y(j) which satisfy |i – j| < Λ [Diks et al., 1996], where Λ is some largest typical 
correlation time lag.  We tested the bias in typical data by sampling every Λ-th connected phase space 
point for 4 ≤ Λ ≤ 23, resulting in Λ different samples for the base case (Qi) and for each cutset (Ri).  We 
then averaged the sampled χ2 values over the Λ2 different combinations of distribution functions for the 
base case and test case cutsets.  As expected, a decrease proportional to 1/Λ occurs in the sampled χ2 

values, because the number of data points contributing to χ2 decreases in the same proportion.  The trend 
over time in sampled χ2 values is the same as in χ2 values without sampling, showing that no bias is 
present.  Thus, we use unsampled χ2 values for the remainder of this work as a relative measure, rather 
than as an unbiased statistic for accepting or rejecting a null statistical hypothesis [Hively et al., 1999]. 
 
Use of the dissimilarity measures on finite length, noisy data requires a consistent statistical 
implementation and interpretation.  We use the first B non-overlapping cutsets as base cases.  The choice 
of the number of basecase datasets, B, should strike a judicious balance between a reasonably short base 
case period to capture quasi-stationary, “normal” dynamics and a sufficiently long period for statistical 
significance.  We have chosen B = 5 for the noiseless, model generated data for fixed dynamical 
conditions, where the variability arises only from the location in and the discrete sampling of the PS.  On 
the other hand, we have chosen B = 10 for noisy machine data to provide a larger statistical sample.    
 
The disparate range and variability of various nonlinear measures are difficult to interpret (especially for 
noisy data), so we need a consistent means of comparison.  Thus, we renormalize the nonlinear measures 
[Hively et al., 1999 and 2000].  For each nonlinear measure, V = {D, K, M1, L, Lc, χ2, and χc

2}, we define 
Vi as the value of the nonlinear measure for the ith cutset.  As before, V is the mean value of that 
nonlinear measure over the non-outlier base cases, with a corresponding sample standard deviation σ, as 
described above.  No averaging is needed for D, K, and M1 since the calculation of these measures 
involves only one cutset at the time.  The renormalized form is then U(V) = |Vi – V|/σ, which measures the 

 



 69

number of standard deviations that the test case deviates from the base case mean.  Several successive 
occurrences above threshold provide a clear indication of condition change. Alternatively, a systematic 
rise in the phase-space dissimilarity measures will indicate a clear departure from the base case dynamics, 
and provides forewarning of failure. 
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Introduction 
 
This appendix describes testing that was performed on the PSU (Pennsylvania State University) 
Mechanical Diagnostics Test Bed (MDTB) in support of work at Oak Ridge National Laboratory (ORNL) 
under the U.S. Department of Energy NERI2000-109 (Nuclear Energy Research Initiative) project.  This 
test plan describes the MDTB, the equipment that will be tested, instrumentation and data acquisition 
equipment, and the conditions and procedure under which the equipment will be tested. 

Test Bed 
 
Figure B.1 shows the MDTB, which was built as an experimental research station for the study of fault 
evolution in mechanical gearbox power transmission components.  The gearbox is driven at a set input 
speed using a 30 HP, 1750 RPM AC (drive) motor.  A mechanical load (torque) is applied to the gearbox 
by a 75 HP, 1750 RPM AC (absorption) motor.  The maximum speed and torque are 3500 RPM and 225 
ft-lbs respectively.  Speed variation is accomplished by varying the frequency to the motor with a digital 
vector drive unit.  The variation of the torque is accomplished by a similar vector unit capable of 
controlling the current output of the absorption motor.  The system speed and torque set points are 
produced by analog input signals (0-10 VDC) supplied by the data acquisition controller computer.  The 
MDTB is capable of parallel or right angle gear motor mounts.   
 
 

  
 

Figure B.1:  Mechanical Diagnostics Test Bed 
 
The MDTB has the capability of testing single and double-reduction industrial gearboxes with gear ratios 
from about 1.2:1 to 6:1 and with ratings that can range from 5 to 20 HP.  Duty cycle profiles can be 
prescribed for varying speed and load.  Drive line speeds for tests to date have been fixed at 1750 RPM 
with variable load profiles that step up to maximum values of 2 to 5 times the rated torque of the test 
gearbox.  The motors and gearbox are hard-mounted to minimize vibration transmission, and are 
precision aligned using laser technology.  The shafts can be connected with either flexible or rigid 
couplers.  Torque limiting clutches are used on both sides of the gearbox excessive torque that could 
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occur with gear jamming or bearing seizure.  Also, torque cells are used on both sides of the gearbox to 
directly monitor the loads transmitted and efficiency.  The vector drives control the drive and load 
motors, providing output signals, which are sampled and stored.  Output data include: input power to the 
drives, root-mean-square (RMS) currents, winding temperatures, motor speed, and generator torque.  
These signals allow automation and shutdown of motors directly through the controller PC. 

Equipment to be Tested 
 
The MDTB was designed to perform run-to-failure testing on gearboxes.  To date, only single-reduction 
gearboxes have been tested on the MDTB.  The intent under this program is to use the MDTB to collect 
data on single-reduction gearboxes.  Table B.1 describes the characteristics of two candidate gearboxes.  
The first two sets of data from the MDTB will be collected on Dodge gearboxes.  Future sets may be 
collected using the SEW1 Eurodrive gearboxes. Table B.2 and Table B.3 show the bearing and gear mesh 
frequencies for the Dodge gearbox at rated input speed. 
 

Table B.1:  Candidate Gearboxes 

Brand Dodge (R86001) Dodge (R86005) 
Model Number APG Size 3 APG Size 3 
Description Single Reduction Helical Single Reduction Helical 
Ratio 1.5 3.38 
Rated Input Speed 1750 RPM 1750 RPM 
Rated Output Torque 530 lb-in 555 lb-in 
Potential Failure Gear  Shaft 

 
 
The Dodge gearboxes have the advantage that they have already undergone extensive (over 25 runs) on 
the MDTB.  Our previous experience with the Dodge gearboxes means that we should be able to induce 
predictable failure modes during different runs (shaft failure, input gear failure, output gear failure, etc.).  
The SEW Eurodrive gearbox is a precision gearbox that uses AGMA-rated gears (American Gear 
Manufacturers Association). 

                                                 
1 SEW (Süddeutsche-Elektromotoren-Werke) was the name of the original German company, which was founded 
by Christian Pähr in 1935. 
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Table B.2:  Dodge Gearbox Bearing Frequencies (at rated input speed) 

Bearing Input and Output Frequencies – 1.5 & 3.3 Gearbox Ratio 
Description Ball Bearing 

(outer) 
Ball Bearing 
(inner) 

Tapered Roller 
Bearing (inner) 

Taper Roller 
Bearing (outer) 

Part Number 6307 6309 #15520/15578 #2520/2581 
Input Freq (Hz)  

29.1667 
 
29.1667 

 
16.0715 

 
16.0715 

(OUTFREQ) 
FTF (Hz) 

 
10.76 

 
11.07 

 
8.03 

 
7.85 

(OUTFREQ) 
BPFO (Hz) 

 
86.06 

 
88.57 

 
128.56 

 
126.08 

(OUTFREQ) 
BPFI (Hz) 

 
147.27 

 
144.77 

 
175.97 

 
178.46 

(OUTFREQ) 
BSF (Hz) 

 
51.77 

 
57.03 

 
59.64 

 
52.82 
 

 
Table B.3:  Dodge gearbox Gear Mesh Frequency (at rated input speed) 

Gear Frequency 
Gearbox Size 3 – Ratio 1.5          875.5 Hz 
Gearbox Size 3 – Ratio 3.3          613.0 Hz 

 
Instrumentation and Data Acquisition Equipment 
 
Data will be collected using a National Instruments PXI measurement system.  Figure B.2 shows a picture 
of an example NI system. This data acquisition system is composed of a backplane, a processor and 
control module, and separate data acquisition modules.  The MDTB testing will use NI4472 dynamic 
signal acquisition and analysis modules (Figure B.3).  Module operating characteristics are given in Table 
B.4.   Each module has 8 analog inputs with simultaneously-sampled, 24-bit, sigma-delta A/D converters.  
The maximum sample rate for each channel is 102.4 kHz.  The internal digital anti-aliasing filters in the 
sigma-delta A/D’s are designed to have the following dynamic characteristics (per National Instruments 
specification sheet for the data acquisition module): 
 
Alias-free bandwidth (passband): DC to 0.4535 fs 
Stop band:        0.5465 fs 
Alias rejection:       110 dB 
 
These specifications are consistent with comparable sigma-delta A/D systems.  We intend to acquire data 
at 51.2 kHz sample rate, which should provide an alias-free bandwidth of DC to 23 kHz.  Note that the 
mounted resonance frequency of the accelerometers that will be used for vibration measurements is above 
70 kHz, well outside the bandwidth of the proposed measurements. 
 
The following data will be collected: 
 
3-phase input motor voltages 
3-phase input motor currents 
3-axis acceleration measurement on gearbox housing 
input and output torque 
 
All channels will be sampled at approximately 50 kHz in 10 second snapshots.  The data will be saved to 
a computer hard disk drive.  Operating specifications for the tri-axial accelerometer are given in Table 5.  
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Additional sensor measurements may be added on open data acquisition channels to provide consistency 
with earlier gearbox tests.  The full sensor list will be provided in the post-run test description along with 
a drawing showing sensor placement. 
 
 

 
Figure B.2:  National Instruments PXI Data Acquisition System 

 
 

 

 
Figure B.3: National Instruments Dynamic Data Acquisition Module 

 
 
 
 

Table B.4:  DAQ Module Specifications 
Channels per module 8 
A/D resolution 24 bits 
Dynamic range 120 dB 
Measurement bandwidth DC-45 kHz 
Coupling AC/DC 

 
 

Table B.5:  Accelerometer Specifications 
Sensor Name Accelerometer 
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Sensor Make PCB Piezotronics, Inc 
  Quartz Shear ICP  
Sensor Model # 356B08 
Sensor Serial # 8052 
Sensor Type Shear Piezoelectric 
Sensor Volt Sensitivity 100 mV/g 
Measurement Range  ±50 g  
Frequency Range (±5%)  1 to 10 000 Hz 
Mounted Resonant Frequency  > 70 kHz 
Broadband Resolution 0.005 g rms (0,05 m/s2 pk) 
  
    
Conditioner Make PCB Piezotronics, Inc. 
Conditioner Model # 481A02 
Conditioner Gain 2 

 
 
Data Format 
 
Data will be provided in a documented binary format.  MatLab m-files were also provided to read the 
header information and data from the files.  Data were delivered to ORNL on either CDR or DVDR.  The 
anticipated total size for a one, 10s snapshot containing 11 sensor channels is 22.5 MB (10 seconds x 51.2 
k samples/s x 4 bytes/sample/channel x 11 channels/snapshot). If each channel is saved into a separate 
file, the size per channel per snapshot would be roughly 2.2 MB per file. 
 
Test Conditions and Procedure 
 
The test procedure that will be followed is described below: 
1) Disassemble gearbox and drain out oil; 
2) Take images of both pinion and gear teeth; 
3) Index gear if possible; 
4) Place tooth identification numbers on gear; 
5) Mark mating pinion/gear teeth with a large slash; 
6) Assembly gearbox using mating slash and refill with manufacturer gear oil; 
7) Mount the gearbox to the test stand and laser align; 
8) Attach all sensors to the gearbox and set up data acquisition system; 
9) Calibrate all sensors and save results, with time stamps to correlate with oil data; 
10) Run Test Matrix until failure; 
11) Disassemble gearbox and take images of both pinion and gear teeth; 
12) Index gear if possible. 
 
The intended test conditions are shown below in Table B.6.  Data will be collected until failure of the 
gearbox or until the damage to the gearbox threatens to induce damage in other system components.  
 
 
 
 

Table B.6:  Test Condition Matrix 
Test 
Condition 

Speed 
(RPM) 

Torque Length of 
Condition 

Snapshot 
Rate 

Ground Truth 
Information 
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1 1750 100% of 
rated 

1 hour 15 mins Send data to ORNL for quality 
check  
ARL verify quality of data 
Oil sample 
Borescope gears  

2 1750 300% of 
rated 

Until 
failure 

30 mins** 
(nom.) 

Borescope gears if changes are 
detected via algorithms 
Oil samples every 24 hours 
Send data to ORNL for quality 
check and analysis 

** Sample rates will change from 30 minutes to 1-10 minute intervals as algorithms detect changes. 
 
 
The test protocol involves: (i) a linear increase in motor speed from zero to the operational speed, (ii) 
maintenance of this constant speed for some chosen period, (iii) a linear decrease in motor speed from (ii) 
to zero, (iv) sampling of the gearbox oil for particulates as a measure of gear wear. The cycle of (i)-(iv) 
was repeated many times under the test load until the gearbox failed, causing excessive vibration, which 
triggered termination of the experiment. ORNL analysis uses only the flattop data from (ii) of the test 
cycle. 
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Appendix C: Test Plan for Torsion Experiment 
 
 
 
 
 

 
Title: Seeded Crack Fault Test of Laboratory Bladed Disk Assembly 

 
Personnel: Brian Resor, Martin Trethewey, Ken Maynard 

 

 
Test Description 
 
One failure mode in a turbo-machine begins with a crack at the base of a rotating blade, eventually 
causing blade loss. This Appendix describes an experiment to simulate such a failure. PSU conducted the 
experiment on the Torsional Vibration Test Rig during May of 2002.  Figure C.1 shows the test rig. The 
objective was detection of dynamical changes with increasing crack size, thus simulating the change in 
dynamical frequencies due to crack initiation and growth. 

 
 

 

Torsional test rotor 

Vice 

Accelerometers 

Dynamic Signal Analyzer 

Angstrom resolver and 
fiber optic probes 

Motor current and voltage 
transducers 

Figure C.1.  Motor testing equipment setup 
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PSU work to date has simulated the crack growth by changing the lock-nut locations along the threaded 
rods. Figure C.2 shows the rotor assembly, which has eight equally spaced threaded rods to simulate the 
blades. A fractional horsepower DC motor rotates the blades. The present experiment is an extension of 
this earlier PSU work, involving a sequence of tests with a progressively deeper machined “crack” to 
change the rod frequencies, instead of moving the lock nuts. The seeded crack was placed in one of the 
threaded rod “blades” by using a wire electric discharge machining (EDM) to cut a 0.010 in wide slot. 
Test data at each depth of cut included motor voltage, motor current, two-axis translational vibration on 
one bearing pillow block, and torsional vibration of the rotor shaft. A description of the data files is 
shown at the end of this Appendix. Additional details can be found in the 2002 PSU Masters Thesis by 
Brian Resor. 
 
The test protocol was as follows: 
  1.   Acquire test data (items 3-5, below) for the no-cut (nominal) state of the rotor assembly. 

2.   Place an initial 0.010-inch cut in one rod. 
3. Measure the bending natural frequency of the seeded fault rod.  
4. Place the rotor assembly in the torsional vibration test stand. 
5. Run the test stand and acquire the time-serial data from the system sensors. 
6. Remove the rotor assembly and increment the slot depth another 0.010 inch by EDM. 
7. Repeat steps 2 and 6 until a “failed” state is achieved (after six successive EDM cuts). 

 
Deliverables for this experiment include:  

1. Data for each of the seven tests of the rotor (one nominal state, plus six cuts). 
2. Experimental characterization of each test state. 

 
The motor that spins the rotor is a small 10,000 RPM DC motor made by Bodine Electric Company.   
Typical motor supply is on the order of 4 Volts and 2 Amps (depending on the load that is being spun).  
This particular motor is not manufactured anymore. The DC power supply is by Sorenson Power 
Supplies, a Raytheon Company (part number DCR150-12B). 
 
The transducer that was used for measuring motor input voltage was a LEM Voltage Transducer CV 3-
200.  The current was measured using a LEM Current Transducer LTS 6-NP.  Both are contained in the 
box that is pictured in Fig. C.1. 
 
The vice is used to hold the rotor assembly, while the “blade” static frequency is measured by placing the 
tip of the fiber optic probes very close to the end of the blade and plucking the blade.   The probes sense 
the size of the gap between their tip and the tip of the blade.  This signal is analyzed in the DSA in order 
to determine the blade frequencies. 
 
Accelerometers were mounted on a pillow block to 
measure vibration in both horizontal and vertical 
directions. 
 
The angstrom resolver is the instrument that 
converts the signal from the optic probes into a 
voltage which is then fed to the computer. 

     Figure C.2. Simulated bladed disk assembly 

 
The data acquisition system is a Hewlett Packard 
VXI Mainframe with an E1433A 8-channel data 
acquisition board with tachometer inputs.  Data is 
sent from the VXI Mainframe to a desktop PC using 
the HP E8491A firewire card. 
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The desktop PC used a software package called HP DAQ Express to manage the data acquisition.  Using 
this software along with the E1433 card, it was possible to acquire 3 simultaneous channels of data at 
12.8 KHz sample rate. 
 
Results of Crack Simulation 
 
The seeded defect for these tests was a small “crack” at the base of one of the eight blades of the rotor, as 
shown in Fig. C.3.  Wire EDM cutting was used to produce the smallest possible cut to simulate a crack.  
The diameter of the wire that was used for these cuts was 0.010 inches and the over burn is approximately 
0.001 inches.  This adds up to a total cut width of 0.012 inches.  The cut depth can be controlled to within 
about 0.0005 inches. 
 

 

Wire EDM Cut

Figure C.3. Picture of blade cut 

The cut location was as close to the blade root as was practical.  A fixture was created for use in the Wire 
EDM machine to which the whole bladed assembly (excluding shaft) is mounted.  Using computer 
controlled tooling, the cut location and depth can be carefully controlled for each cut.  The depth of the 
first cut was measured from the point that the 0.010 inch wire came in contact with thread surfaces at the 
deepest point of the thread. 
 
The original tuned frequency of all the blades was set at 205 Hz (within +/- 0.25 Hz).  Cuts were made to 
each of the depths found in Table C.1 and the static frequencies were recorded.  Static frequencies for first 
bending modes in both axes were recorded.  The “soft” static frequency corresponds to the frequency that 
couples with shaft torsion and is measured by the torsional vibration measurement technique. 
 
 
 

Table C.1: Torsional test results summary 
 

Cut spec'd cut 
depth (in)

Soft static 
blade 

frequency (Hz)

Stiff static 
blade 

frequency (Hz)

Coupled 
Mode

1st Shaft 
Mode

Dynamic 
Rogue Blade 

Frequency

Speed 
(RPM)

Coupled 
Mode

1st Shaft 
Mode

Dynamic 
Rogue Blade 

Frequency

Speed 
(RPM)

0 205 205 213.5 268.5 not visible 2941 195 233 not visible 2930
1 0.024 203 205.25 213.5 266.5 not visible 2858 198.5 240.75 207.25 3032
2 0.032 201.75 205 213.5 265.5 206 3019 198.5 239.5 206 3014
3 0.037 201.5 205.25 214 264.25 205 2988 198.25 240 206 3039
4 0.042 198.5 204.5 213 264.5 203 3029 197.25 235.25 203.5 2986
5 0.047 195 203.75 212.5 264.25 200 2959 197 241 201.75 3022
6 0.049 193.75 203.5 211.5 261.8 199.1 2994 193.3 233.8 200.7 3004  
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Figure C.4 shows the relationship between cut depth ratio and percentage degradation in blade frequency.  
Cut depth ratio is defined as cut depth L to pitch diameter D of the threaded rod (D is about 0.016 inches).  
Note that the trend in frequency degradation very nicely follows a definite trend except for one point that 
corresponds to Cut 3.  The rig was probably not mounted quite right for this cut and therefore the cut 
depth might not have been created accurately. 
 

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.1 0.2 0.3 0.4
L/D

F/
Fo

 
Figure C.4. Cut depth versus frequency change 

 
The rotor was assembled in the torsional rig and it was spun at approximately 2900-3000 rpm.  The 
running speed was maintained approximately the same for all tests so that effects of aerodynamic 
excitation and centripetal speed stiffening are equal throughout. 
 
In some of the motor voltage and current and acceleration data there may be evidence of speed 
fluctuations.  During some of the testing it was difficult to keep the rig running at a constant speed for 
some unknown reason.  The motor speed would often cycle by about 50 RPM every 15-20 seconds.  This 
problem was not experienced in the past. 
 
Torsional Measurements 
 
Torsional data was acquired by detecting zero crossings from a striped tape encoder that is installed on 
the shaft of the rotor.  Measured zero crossings are compared to imaginary zero crossings that would be 
observed with no torsional vibration in order to determine the phase shift of the carrier wave.  When 
rotating speed is known, shaft twist is directly related to phase shift.  See the 2002 PSU Masters Thesis by 
Brian Resor for more information on this technique. 
 
The torsional data from this testing is the actual shaft twist time waveform in the form of degrees of twist 
versus time.  The times that are reported are the exact sample times (which are not spaced constantly due 
to the nature of this technique).  The shaft twist is calculated from the measured zero crossings from a 159 
pulse-per-revolution striped tape.  The data is corrected for errors that are present in the striped tape.  A 
1st order digital Butterworth high-pass filter with 50 Hz cutoff is also applied in order to remove the 
effects of very gradual shifts in running speed. 
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The torsional spectra for this experiment are the logarithm of torsional displacement versus frequency.  
For example, a value of –3.5 on the vertical scale corresponds to a peak vibration amplitude of 10-3.5 
degrees = 0.000316 degrees. 
 
Torsional Results 
 
For each cut depth, data was acquired with the rig in two different configurations.  Setup 1 is the typical 
setup that has been studied in all the previous work on torsional vibration monitoring for turbine blade 
health.  The location of the coupled mode (See Figure C.5) is 5-10 Hz higher than the rogue blade mode.  
In this configuration, as a rogue blade deteriorates it appears to separate and grow away from the large 
coupled mode peak.  Figure C.66 shows the torsional results of this portion of the test. 
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Figure C.5:  Important torsional peak locations 
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Figure C.6: Rogue blade cascade for Setup 1 
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Setup 2 is a different configuration in that the coupled mode is about 10 Hz lower than the rogue blade 
mode.  This configuration is achieved by simply moving the masses on the shaft by a small amount. 
 
Results for testing in Setup 2 are found in C.7. 
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Figure C.7.  Rogue blade cascade for Setup 2 

The coupled-mode peak appears in slightly different locations in each case due to difficulties associated 
with disassembly and reassembly of the shaft components for each cut.  These effects are insignificant. 
This experiment shows that the rogue blade mode behaves as expected, moving away from the tuned 
frequency die to coupling with the shaft torsion.  The rogue blade vibration amplitude increases as the 
frequency change increases. Moreover, this test shows that a very fine cut shifts the rotor-blade frequency 
that is detectable via the torsional vibration measurement. 
 
Data File Descriptions 
 
PSU provided four MatLabTM-formatted binary data files for each wire EDM cut of a blade.  Their 
contents are shown in the table below. The designation, “xx,” corresponds to a set of data (examples: 
Base, Cut01, … Cut06). Both DC and AC-coupled motor data were provided, with a corresponding 
change in the A/D voltage range. Additionally, two different setups were used to acquire data.  Setup 1 
contained torsional natural frequencies at 213 Hz and 265 Hz.  Setup 2 contained torsional natural 
frequencies at about 195 Hz and 240 Hz.  Blade frequencies are visible in the torsional spectrum within 
the range of 199-207 Hz. 
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Filename Variable name Description
Sample 
rate (Hz)

length of 
block (N)

A/D voltage 
range (V)

xx_motor_dc.mat Motor data, DC coupled
fs sample frequency 1
Motor_current Motor current 12,800 1536000 5
Motor_voltage Motor voltage 12,800 1536000 5
Tach 1 PPR tach signal 12,800 1536000 10

xx_motor_ac.mat Motor data, AC coupled
fs sample frequency 1
Motor_current Motor current 12,800 1536000 0.05
Motor_voltage Motor voltage 12,800 1536000 0.01
Tach 1 PPR tach signal 12,800 1536000 10

xx_accel.mat Acceleration data
fs sample frequency 1
Vert_accel vertical acceleration 12,800 1536000 1
Horz_accel horizontal acceleration 12,800 1536000 0.1
Tach 1 PPR tach signal 12,800 1536000 10

xx_torsion.mat Torsional data
Torsion Digital demodulated 

torsional vibration signal
7770.98 830139 na

SampleTimes sample times of the 
torsioinal signal

 19.66x10^6 830139 na

fs average sample 
frequency of torsional 

1
 

 
Motor voltage, current, and acceleration were supplied as a pure voltage signal.  Conversion of these 
voltages to standard units requires scaling factors as listed in the following table: 
 

Conversion Ratio
Motor Voltage 200 Vin/10 Vout
Motor Current 2.5+(0.625*IP/IPN)  V

IP = input current
IPN = 6A

Vertical Accleration 1008 mV/g
Horizontal Acceleration 104.4 mV/g  
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APPENDIX D: BEARING PROGNOSTIC TEST RIG 
Terri A. Merdes 

May 7, 2002 
 
 
INTRODUCTION 
 
The Bearing Prognostic Test Rig (BPTR) provides bearing transition-to-failure data that supports 
development of diagnostic and prognostic algorithms. These algorithms can benefit a wide range of 
applications and industries, since nearly all rotating machines rely on some type of bearing.  With 
rigorous demands being placed on their loading capacity, bearings are among some of the most important 
components in rotating machines.  There is a trend toward increased reliability requirements.  Today 
rolling bearings have developed into a particular branch of engineering research. 
 
This research enables calculation of bearing life with considerable accuracy, in order to correlate the 
bearing life with the service life of the machines involved.  Unfortunately, a bearing sometimes does not 
attain its calculated rating life. There may be many reasons for this:  inadequate or unsuitable lubrication, 
heavier loading than has been anticipated, ineffective sealing, careless handling, or insufficient internal 
bearing clearance.  Each fault type produces a particular type of damage, leaving a unique imprint on the 
bearing itself.  Therefore, a growing need exists for algorithms to detect progression of these failures 
before costly teardown and inspection processes are implemented. 
 
DEFINING BEARING LIFE 
 
Bearing life is defined as the number of revolutions by the bearing before the first signs of fatigue failure 
appear.  Under normal conditions, the working surfaces of a bearing generally are subjected to very high 
alternating stresses due to the continuous action of the rolling elements (number of revolutions and 
magnitude of the load). Specifically, cyclical shear stresses appear immediately below the load-carrying 
surface, eventually causing cracks which extend out to the outer bearing surface. As the rolling elements 
pass over these cracks, the surface materials break away in a relatively long, drawn-out process. This fault 
condition is known as spalling or flaking, which causes increased noise and vibration in the bearing.  
 
DEEP GROVE BALL BEARINGS 
 
These bearing types are the most widely used of all for general applications, incorporating deep, 
uninterrupted raceways which makes the bearing suitable for many different loads types: radial loads or 
radial and axial loads in either direction.  Due to the optimum size of the balls and their conformity with 
raceways, the bearings have a comparatively high load carrying capability and are suitable for high-speed 
operations and have some misalignment capacity.  The bearings are manufactured with evenly spaced 
balls inside a one or two-piece cage around the raceways, and may be shielded and sealed. 
 
THE EXPERIMENT 
 
The Bearing Prognostic Test Rig uses a pair of double row spherical roller support bearings to support a 
shaft on which the test bearing is held in place by a bearing holder between the two support bearings.  The 
test rig was configured to test deep groove ball 1-1/8” test bearings, but is configurable to other types of 
bearings. A load jack and load cell were mounted directly behind the test bearing and have a radial load 
capacity of 1,000 lbs in phase with the outer ring.  The system is driven by a SCR motor as shown in 
Table D.1, with an integral tachometer fitted to the motor.  The motor is coupled to the test shaft with a 
flexible coupler to reduce transmitted vibration from the motor. Piezoelectric accelerometers are currently 
utilized with frequency ranges between 10 and 100KHz. Data is collected on a 48 channel National 
Instrument 4472 PXI data processing system. The system was run continuously in the overloaded state, 
with data acquired at periodic intervals until the bearing finally failed. The objective of this test was 
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acquisition of data throughout the entire test sequence as a quantitative indicator of the failure 
progression. The deliverables are the data and their historical characterization.  
 

Table D.1.  dc Variable Speed Motor 
 
 

Motor 
kW 

Base 
Rpm 

Arm 
Vdc 

Arm 
FLAmps 

Approx 
Kgs 

1.5 3000 180 10.0 31.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D.1.  Bearing Prognostic Test Rig   
 
 
 
Table D.2:  Tri-axial Accelerometer Description 
      

 
Test Condition Speed Radial Load 
1 2500 rpm 500 lbs 
2 1250 rpm 500 lbs 
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CURRENT EQUIPMENT REQUIREMENTS 
 
For this experiment, the BPTR required the purchase of the following: 
 

• A new stainless steel shaft for $65.00, involving machine shop work as shown in Figure D.2.   
• Each test deep groove ball bearing from ESI Bearing Distribution costs $5.50. 

 
 
   

 

Rick Horner 5-8708
Project# 9923
Stock Material:
Type 303 1-1/4 inch Stainless Rod

16.5”

4.75”

8.25”

1.65”

1.125” Dia. 1.1816” +.0003 Dia.
- .0000 1.25” Dia.

1”

2.25”

5.00”

6.25”

Key Slot 1/8 inch deep X ¼ inch wide
1-1/4 inch long Location not important

62° .25”

.25” A and B key slot 
locations

A B

1.85”

1.125” Dia.

 
Figure D.2.  BPTR Stainless Steel Shaft 

 
 
Two tri-axial accelerometers were installed, 
as described in Table D.2: 
 

• One on the top center test bearing 
support housing 

 
• One on the outside roller support 

bearing 
 

Current and voltage were acquired from the 
DC electric motor.  All data were sampled at 
51.2 kHz sample rate using National 
Instruments 24-bit A/D data acquisition HW 
(same data acquisition system used on 
MDTB gearbox tests) 
 
 

1Sample Count

24Bit Resolution

100 mV/gSensor Volt Sensitivity

ICPSensor Type

8052Sensor Serial #

356B08Sensor Model #

PCBSensor Make

AccelerometerSensor Name

A02Sensor Directory

1Sample Count

24Bit Resolution

100 mV/gSensor Volt Sensitivity

ICPSensor Type

8052Sensor Serial #

356B08Sensor Model #

PCBSensor Make

AccelerometerSensor Name

A02Sensor Directory
Triaxial 

024000240051200 
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