
Forewarning of Machine Failure via Nonlinear Analysis 
 

V. A. Protopopescu and L. M. Hively 
 

Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge,TN 37831-6355 
protopopesva@ornl.gov ; hivelylm@ornl.gov 

 
 

2 2( ) /( ),i i i i
i

Q R Q Rχ = − + (1)∑
, (= − 2)∑ i i

i
L Q R

 

Nonlinear processes display rich dynamics under 
both normal and abnormal conditions. These 
dynamics typically are extracted from process-
indicative data, xi, via time-serial analysis for 
monitoring, prediction, and control. Despite 
decade-long efforts and countless applications, 
timely, robust, and accurate detection and 
characterization of condition change remains 
extremely challenging in large, complex systems 
for which no suitable or reliable models exist.  

where the sums run over the populated PS cells. 
We refer to χ2 and L as phase-space dissimilarity 
measures (PSDM). 
 
Over the last two decades, various traditional 
nonlinear measures (TNM) such as correlation 
dimension (D), Lyapunov exponents, 
Kolmogorov entropy (K), or mutual information, 
have been used as nonlinear metrics to detect 
changes in dynamical systems, but success has 
remained limited at best [3]. Indeed, while TNM 
may distinguish between regular and chaotic 
dynamics, they cannot discriminate between 
slightly different chaotic regimes, especially for 
limited, noisy data. However, the PSDM turn out 
to be much more sensitive, even when data is 
limited and/or noisy [3-6].  The reason for this 
enhanced performance is clear from the 
definition: in PSDM, the DFs are first subtracted 
and then integrated; in TNM, the information in 
each DF is averaged out and rendered essentially 
useless for further discrimination.   

 
We present a new approach to assess condition 
change within a model-independent framework, 
from limited, noisy data. The specific application 
is forewarning of equipment and machine 
failures. First, we remove confounding artifacts 
from the process indicative data, xi.  This is done 
by using a moving window of length 2w + 1, 
with w data points on each side of the current 
central point. We fit a parabola in the least-
squares sense over this window, taking the 
central point of the fit as the low-frequency 
artifact, fi. The residue, gi = xi – fi, is essentially 
artifact-free. Removal of a known low-frequency 
artifact uses a filter-window width, w = fs/(4.4 fx). 
Here, fs the data sampling rate, and fx is the high-
pass cutoff frequency of the noise. Removal of 
an unknown artifact involves a search over the 
value of w to determine the best sensitivity for 
the measures of condition change, as described 
below. From the artifact-filtered signal, gi, we 
construct a d-dimensional time delay vector, 
whereupon the standard phase space (PS) 
reconstruction technique [1-2] yields a discrete 
representation of the distribution function (DF) 
in the d-dimensional PS. The resulting DF 
captures the underlying dynamics, in terms of 
geometry and visitation frequency; (un)altered 
dynamics lead to an (un)changed DF. 

 
Direct comparison of PSDM and TNM is 
meaningless, due to their disparate ranges, 
variability, and physical interpretation.  Thus, we 
convert both into renormalized dissimilarity 
measures (RDM), defined as: U(V) = |Vi - V|/σ  
[3 – 6].  Here, Vi denotes any nonlinear measure 
from the set, V = {D, K, χ2, L}, over the i-th 
window of N non-overlapping, contiguous time-
serial data points; V denotes the mean value of V 
over a number B of base case windows, with a 
corresponding sample standard deviation, σ. The 
parameters (N, S, d, λ, w, and B) depend on the 
specific data. Distant states have large RDM, 
which we interpret as forewarning of an 
abnormal event, such as a machine failure. 

 
For practical implementation, the DFs are 
discretized.  We denote the DF population of the 
i-th bin of the PS as Qi and Ri for the base-case 
and test-case DFs, respectively.  We compare the 
test and base cases, by using two new measures:  

 
We have validated this approach on: (i) the 
Lorenz [3, 5] and Bondarenko [6] models; (ii) 
forewarning of epileptic seizures from clinical 
scalp EEG [3 - 6]; (iii) different drilling 
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conditions from motor current and (un)balanced 
states in a centrifugal pump from motor power 
[7]; and (iv) failure forewarning in nuclear-grade 
equipment [8].  
 
Fig. 1 shows an example [8] of TNM and PSDM 
for seeded faults in an 800-HP motor, based on  
electrical power, P = Σk IkVk, from the three-
phase motor currents, Ik, and voltages, Vk.. State 
1 indicates nominal operation.  In State 2, one 
rotor bar was cut 50% at the 11-o'clock position. 
The same rotor bar was cut completely through 
in state 3.  In state 4, a second rotor bar was cut 
100% at the 5-o'clock position. Finally, two 
more bars were cut on each side of 11-o'clock 
bar (State 5). Thus, the fault severity doubled 
from ½ to 1 to 2 to 4. This exponential increase 
is not reflected by correlation dimension (Fig. 
1b) and Kolmogorov entropy (Fig. 1c), but is 
faithfully mirrored by the linear rise of the 
logarithm of the two PSDM (Figs. 1d-1e). 
 
In summary, our new method combines several 
original advances to achieve sensitivity that is at 
least one order of magnitude larger than that 
obtained to date by competing methods.  A key 
step is removal of confounding artifacts with a 
novel nonlinear filter.  The crucial point though 
is the fact that - by using differential as opposed 
to integral measures of dissimilarity - PSDM 
contain a much higher amount of dynamical 
information than TNM.   
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Figure 1: Motor power data vs. time (a), and four RDM vs. dataset number as discussed in the text for (b) 
Kolmogorov entropy, (c) correlation dimension, (d) χ2, and (e) L.  The PS reconstruction parameters are as 
follows: d = 4, S = 88 (equiprobable symbols), λ = 31, w=550, N = 12000, and B = 5. 


