
JOURNAL OF OBJECT TECHNOLOGY 
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003 

 
Vol. 2, No. 5, September-October 2003 

 
 
 
 

Cite this article as follows: Author’s name: “Paper title”, in Journal of Object Technology, vol. 2, 
no. 5, September-October 2003, pp. ….. 

Secure Software 
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A. 

Abstract 
Granting access to those who should have it and denying access to those who shouldn’t 
is a basic feature in many software products. Security is of strategic importance in many 
markets and types of products. In this month’s issue of Strategic Software Engineering, 
I will explore some issues about the strategic importance of security. I will discuss the 
influence of other product qualities such as correctness on the security of the product. 

1 INTRODUCTION 

In January 2005, George Mason University found that hackers had gained access to a 
database containing information on 32,000 people including their social security 
numbers. In February 2005, ChoicePoint, a data collection service, announced that a 
security breach threatened the personal information of over 145,000 people. And the list 
could go on. We want the software that manages our personal and professional data to be 
secure. 
I recently attended the First Annual Cyber Security and Information Infrastructure 
Research (CSIIR) Workshop on Software Security held at Oak Ridge National 
Laboratory. As part of that workshop I made a presentation based on the following 
premise: Poorly written software will have more security vulnerabilities than well written 
software. In this issue I will expand on that topic with emphasis of the strategic 
importance of security. 
Notice that the title of this column is “secure software” as opposed to “software security.” 
That’s intentional. I am viewing this as the quality attribute of “being secure” rather than 
considering security features such as access control and data encryption. Taking this 
approach brings engineering processes to bear on the problem of how to achieve that or 
any other quality. 
Software is secure when those who have authorization can use its functions and when 
those who do not have authorization can not. The secure quality attribute extends this 
definition to the data managed by the software. It is difficult to confine the achievement 
of security to a single application since its security usually depends upon the security of 
the operating system and utilities that provide essential services. Therefore, security is 



 
 

 
 
 
 

2 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5 

often defined as a quality of an entire environment – the platform and all applications 
running on that platform.  
Obviously being secure, like any quality attribute, is more important in some products 
than others.  Software that controls significant hardware, such as an airplane, or that 
manages significant data, such as banking information, will require much higher levels of  
security than software that controls an advertising sign or plays a game. However, a 
security vulnerability in a game running on a platform shared with software that performs 
secure business transactions may endanger those transactions. 
McGraw makes the very good point that much of the software security work deals with 
operational level fixes because they were designed by operational level people [McGraw 
04]. That is too late. I will discuss how to incorporate security as a quality consideration 
early in the development life cycle. 

2 MOTIVATION 

There is growing support for developing secure software by focusing on software 
engineering best practices. I will review some of the literature so that you can understand 
the range of responses to the security problem and so that I can discuss several aspects of 
the software engineering approach. 
The Security Across the Software Development Lifecycle Task Force led by co-chairs 
Ron Moritz of Computer Associates, and Scott Charney of Microsoft made a number of 
recommendations about improving software development techniques that will in turn 
improve the security of the software being produced [Moritz 04]. Included in those 
recommendations are: 

• Adopt software development processes that can measurably reduce software 
specification, design and implementation defects. 

• Software producers should adopt practices for developing secure software. 
• Software producers, where appropriate, should conduct measured trials of 

available approaches and publish their results. 
I will discuss some actions that follow the first two recommendations. 
Gary McGraw in his “Building Security In” department in IEEE’s Security and Privacy 
and describes the “trinity of trouble. [McGraw 04]” These are three problems that 
contribute to increasing security problems. They are: 

• Ubiquitous network connections  
• Easily extensible systems 
• Increasingly complex systems 

The latter two problems are clearly software engineering issues and I will address these 
shortly.  
What makes secure software strategic to a company? It’s the risk of losing the trust of 
your customers as well as the risk of litigation. There are several ways to mitigate these 



 
 
 
 
 
 

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 3 

risks. In the next section I will discuss qualities of software products that reduce the 
probability of security problems and in the following section I will discuss some 
techniques for achieving those qualities. 

3 QUALITIES RELATED TO SECURITY 

Talking about “well written” software, as I did in my premise, is too vague for 
engineering analysis. In this section I want to examine specific qualities and their 
relationship to being secure. Almost any specified quality that is not achieved by the 
product could degrade the secure quality and introduce a security vulnerability. However, 
certain qualities speak to the resistance of a product to attack.  

Correct 

Correctness is a quality that is often implicitly required rather than explicitly specified.  
For our purposes, correctness is the ability of a software product to satisfy its functional 
requirements. Security is often compromised by the mistaken idea that a formal proof of 
the specification results in correctness. A proof is only a first step. In fact some of the 
most prevalent security vulnerabilities arise from either an incomplete specification or a 
failure to implement the specification exactly as stated. 
Buffer overflow errors account for a large percentage of vulnerabilities. So called 
“complete” specifications often consider only static qualities and do not specify 
operational characteristics such as maximum size of a data structure or how overflows 
will be handled.  
Even if the specification was complete and correct, it will not matter if the 
implementation of that specification is created by a human. Automatic program 
generation is similarly flawed unless the generator has been proven correct. 
If the program is not correct then it becomes difficult to know whether the program’s 
failure to meet expectations is due to a security breach or just built-in incorrectness. 

Robust 

The degree to which a product is robust is the percentage of time it can continue to 
function in the face of unusual conditions. Notice that I did not say function correctly. 
The specification often does not indicate what happens in the case of unexpected errors in 
which case there is no definition of “correct.”  
Embedded systems are often defined to be robust by having an error state in which the 
system is specified to perform some function that will do the least harm to the hardware 
or the environment. This often is a reset back to its initial state but it may be a transition 
to some other intermediate state. Any input that is not covered by the specification results 
in the system entering that error state. 



 
 

 
 
 
 

4 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5 

The software is vulnerable in those regions of input where there is no specification. 
Malicious attacks are often probes to find the boundaries of a specification. Once this 
limit is established, data is supplied that stresses the system looking for areas in which the 
software is not robust. 
Robustness is not only affected by malicious attacks. It also is affected by accidental data 
errors.  

Reliable 

The reliability of a product is measured by the percentage of the operating time that the 
product performs requested functions correctly. Software is vulnerable when there are 
specified inputs for which the product does not produce correct results. The more 
unreliable the software the more vulnerable the software. 
Reliability is a property of individual components and it is an emergent property of an 
assembly of components. When the faults causing the software to fail is a result of the 
composition the vulnerability is particularly difficult to recognize. It can not be found 
during unit testing and may be so narrow that finding it during system testing is also 
unlikely.   
Quality assurance activities are needed at each of the three traditional levels: unit, 
integration, and system.  

4 BUILDING SECURE SOFTWARE 

Consistent error handling 

A large number of  vulnerabilities are exploited by causing an error and taking advantage 
of how the error is handled. The best strategy is to bullet-proof the software so that errors 
don’t happen but it is doubtful that will happen any time soon. Therefore, the alternative 
strategy is to provide a consistent error handling scheme. The expectation is engineers 
will be less likely to make mistakes in the presence of a consistent error handling scheme    
I will not go into a comparison of returning error codes versus exceptions here. The point 
to be made here is that the error handling needs to be visible at the appropriate level. 
Error mechanisms that will be propagated between functions but within the component 
must be visible in the function-level specifications within the component. Error 
mechanisms that will be propagated between components need to be explicit and public 
in the component’s specification.  

Robust data structures 

As I said above the best defense is to bullet proof the software. Buffer overflows are a 
leading source of vulnerability. One of the participants in the CSIIR workshop made the 
excellent point that you can’t overflow a hardware buffer. Why should it be different with 



 
 
 
 
 
 

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 5 

a software buffer? There are widely-used practices that can prevent overflows but too 
often they are not followed.  
What is the acceptable behavior when new data is available and there is no room for it in 
the existing buffer? The possible answers are: 
• Standard approach – continue as usual, runoff the end, reference random memory, cause wild and 

crazy things to happen in your program 
• Not so standard approach – do nothing, don’t write the data, it will eventually be lost 
• Throw a specified exception – allow others to handle 
• Expand buffer to accommodate, after checking that there really is more memory 
 

Obviously, the first two approaches are not acceptable but the first one is widely used. 
The last two approaches are not mutually exclusive. Taken together they form an 
implementation pattern (different from a language idiom and more detailed than a design 
pattern). Figure 1 shows the decision tree for the implementation. Different languages 
will require different language idioms. 

 

Room for 

data 

Write and 

return 

Room for 

expansion  

Expand 

buffer, write 

and return 

Throw buffer 

overflow 

exception 

yes 

yes 

no 

no 

 
Figure 1 - Buffer overflow implementation pattern 

While I have focused on the buffer overflow problem for obvious reasons, the same 
detailed analysis should be done for every state that is maintained in a product. 

Misuse and Abuse cases 

Software engineering provides techniques to build a product to a purpose. The use case 
technique has proven an effective technique for capturing the thinking of stakeholders 



 
 

 
 
 
 

6 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5 

about how the product will be used [Jacobson 92]. Change cases are a type of use case 
that capture how stakeholders think the product will change [Ecklund 96].   
Several authors describe misuse and abuse cases as an approach to helping stakeholders 
think about possible scenarios that need to be defended against [Hope 04]. This includes 
defining actors that model attackers and brain storming how the attackers would “use” the 
system. These abuse cases can be built on known attack patterns. The report of the 
Security Across the Software Development Lifecycle Task Force included a list of 49 
such patterns. Table 1 shows a few of their attack patterns. 

Table 1 - Attack patterns 

Use a User-Supplied Configuration File to Run Commands 
That Elevate Privilege 

Make Use of Configuration File Search Paths 

Direct Access to Executable Files 

Embedding Scripts within Scripts 

Leverage Executable Code in Non-executable Files 

Argument Injection 

 
Our use case template includes multiple scenarios that describe how the actor uses the 
product. We include “sunny day,” alternative, and exceptional scenarios. Misuse 
scenarios can also be included in the standard use cases. These differ from the ones that 
accompany an attack actor in that these may be accidental situations initiated by an 
innocent, careless user.  

5 SUMMARY 

I have discussed some of the things that are being done to engineer secure software. I 
believe there is much more that can be done. At the workshop I proposed an agenda for 
for research to expand the range of techniques available for engineering security. The 
items on the agenda are: 

 Develop method engineering tactics and guidelines that enhance the security 
quality of the software through improved processes. 

 Structure architecture evaluation techniques to focus on security by searching for 
static security patterns. 

 Discover and capture test patterns that correspond to dynamic security patterns. 
 Develop focused test techniques to effectively explore security test patterns while 

reducing the test suite size. 



 
 
 
 
 
 

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 7 

 Create a defect model for security that can be used to predict types and number of 
security vulnerabilities in scientific codes. 

Execution of these actions would add to the set of tactics that are currently available for 
engineering secure software. 
Security is a quality like any other non-functional requirement. It must be engineered into 
the product rather than being added on at the last minute. It can also be subject to tradeoff 
with other more important qualities – security versus testability for example. It can also 
be a point of variation in a product line architecture - products that are secure and 
products that are not. 
Security becomes more important as more of our personal and business data is 
computerized. The secure quality attribute has to be as carefully engineered as every 
other quality upon which our strategic goals depend. 

REFERENCES 

 [Ecklund 96] Earl F. Ecklund, Lois M.L. Delcambre, and Michael J. Freiling. Change 
Cases: Use cases that identify future requirements. Proceedings of the 
Eleventh Conference on Object-Oriented Programming Systems, 
Languages, and Applications, Association for Computing Machinery, 
1996. 

[Hope 04] Paco Hope, Gary McGraw, and Annie I. Anton. Misuse and Abuse Cases: 
Getting Past the Positive, IEEE Security and Privacy, IEEE Computer 
Society, 2004. 

[Jacobson 92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar 
Overgaard. Object-Oriented Software Engineering, Addison-Wesley, 
reading, Massachusetts, 1992. 

[McGraw 04] Gary McGraw. Software Security, IEEE Security & Privacy, IEEE 
Computer Society, 2004. 

[Moritz 04] Ron Moritz  and Scott Charney. Improving Security Across the Software 
Development Life Cycle, Security Across the Software Development Lifecycle 
Task Force, 2004. 

 

About the author 

Dr. John D. McGregor is an associate professor of computer science at Clemson 
University and a partner in Luminary Software, a software engineering consulting firm. 
His research interests include software product lines and component-base software 



 
 

 
 
 
 

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5 

engineering. His latest book is A Practical Guide to Testing Object-Oriented Software 
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com. 


