Data Fusion for Improved Situational Understanding

Ambareen Siraj
Department of Computer Science
Tennessee Tech University
asiraj@tntech.edu

Intrusion Detection Systems (IDS) as Sensors for Network Monitoring

- IDSs detect inappropriate or anomalous activity
- Goals
 - Detect wide variety of intrusions
 - Detect intrusions in timely fashion
 - Present analysis in understandable format
 - Be accurate
 - Minimize false positives, false negatives
Multi-Sensor Environment

- No “perfect”/“one-for-all” sensor
- Vary by data source, type of detection, implementation, technique used
- Suite of different sensors can corroborate/complement/challenge each other’s findings

Problem

- Sensors overload security administrators with unmanageable volume of data
- Sensors can be very noisy
- Sensors typically do not add any context or significance to data
- Sensors report only on isolated events
- Sensors cannot shed light on global view
Situation Assessment

- Transformation of low level sensor data to human intelligence
 - To support decision making
 - To aid in taking action

Data Fusion for Situation Assessment

- The process of analysis, interpretation, and combination of alerts to derive a quantitative value such that the value is representative of the extent of concern in the system.
 - Overall condensed security view
Possibilistic Approach in Data Fusion

- Based on possibility theory [Zadeh1978]
- Takes uncertainty into consideration
- New application

Unified Fusion Model

- **Alert Prioritization**
 - Association Assessment
 - **Cluster Generation**
 - **Correlation Link Generation**
 - **Incident Association Assessment**
 - **Situation Assessment**

Tennessee Tech University
Multi-Level Alert Clustering

Clustering of two alerts A_1 and A_2

- Alerts are clustered such that different degrees of deviations in commonality of features are tolerated.

Sadmind Ping

MS SQL Ping

130.080.112.103
130.080.112.102

Multi-level Clustering Assessment

- Derives quantitative value for
 - Clusters activated for host
 - High value
 - Indicates aggregation of multiple alerts with same (highly similar) attributes
 - Low value
 - Indicates aggregation of multiple alerts with less similar attributes
 - Host’s involvement in same/similar attack patterns
 - High value
 - Indicates presence of most specific cluster(s)
 - Low value
 - Indicates presence of less specific cluster(s)
Abstract Incident Model

Abstract Incident Modeling Assessment

- Derives quantitative value for
 - Incidents activated for host
 - **High value**
 - Indicates presence of both evidence and risk
 - **Low value**
 - Indicates absence of either evidence or risk
 - Host’s involvement in multi-staged attack scenarios
 - **High value**
 - Occurrence of one or more highly critical incidents in the correlation chain
 - **Low value**
 - Occurrence of one or more less critical incidents in the correlation chain
Situation Assessment

- Determines overall degree of concern

Severity
- Severe
- High
- Significant
- Moderate
- Low

Cluster Association Strength (CAS)

Incidence Association Strength (IAS)

Overall Degree of Concern (ODOC)

Dynamic Fusion

- **Properties**
 - Dynamic
 - Behavior changes
 - Depends on context as well as inputs

\[\Pi_o(\omega) = \Pi_{i1}(\omega) \otimes \Pi_c(\omega) \]
Dynamic Fusion Approach

- **Context is agreement between inputs**
 \[h(\Pi, \Pi) = \sup_{\omega \in \Omega} (\min(\Pi(\omega), \Pi(\omega))) \]

- **Behavior changes with context**

Dynamic Fusion Rule

- **Both behavior restricted by agreement**
 \[\text{Constrained}_\text{HS}(\Pi(\omega), \Pi(\omega)) = \min(\text{HSN}(\Pi(\omega), \Pi(\omega)), h(\Pi(\omega), \Pi(\omega))) \]
 \[\text{Constrained}_\text{MN}(\Pi(\omega), \Pi(\omega)) = \max(\text{MN}(\Pi(\omega), \Pi(\omega)), h(\Pi(\omega), \Pi(\omega))) \]
Experiments

- **Attack data**
 - MIT Lincoln's Lab's 2000 DARPA Intrusion Detection Evaluation (IDEVAL)
 - Scenario Specific Data Sets

- **Multiple sensor report with different security policy**
 1. RealSecure
 2. Snort

Situation Assessment Results for Multi-Sensor Report
Dynamic Fusion
Results for Multi-Sensor Report

Work in Progress

- **Heterogeneous fusion**
 - Different types of IDS
 - IDS and vulnerability scanners
 - IDS and performance monitoring tools

- **Dynamic fusion**
 - Other factors
 - Reliability
 - Group consensus
 - Asymmetric sources
 - Other applications

Host: 172.016.115.020
IAS= 80.86%
CAS= 79.0%
ODOC= 83.26%

Host: 172.016.113.148
IAS= 0
CAS= 80.86%
ODOC= 45.78%