Integrated Circuit Security – New Threats and Solutions

Miron Abramovici and Paul Bradley

DAFCA

Cyber Security Workshop
April 2009
Outline

- The IC security problem
- Possible solutions?
- An interesting technology
- A new approach
- Conclusions
The IC Security Problem

- **Insecure global sources of:**
 - IC manufacturing
 - Silicon foundries
 - Packaging houses
 - IP cores
 - Design services and tools
 - Test services and tools

- **Attack objectives**
 - Sabotage of the system mission
 - Extract sensitive/secret information

- **Compared with attacks on software, attacks on ICs are much more difficult to detect and defend against**
Attacks We Defend Against

- **Pre-silicon intrusions:** design is modified to create Trojans to be activated in the field
 - Attacks occur post-silicon
 - Possible targets
 - Functional logic
 - Infrastructure logic
 - Layout (deterioration attacks)

- **Post-silicon tampering**
 - Make the device work in “illegal” or “unauthorized” modes to extract protected data or to reverse engineer
 - Modify the silicon (using FIB)
Possible Pre-Silicon Intrusions

- **Modifications of functional logic**
 - Corrupt IP cores
 - Clock logic
 - Voltage control logic

- **Modifications of infrastructure logic** *(DFX)*
 - Testability
 - Manufacturability
 - Reliability
 - Debug

- **Modifications of layout**
 - Thinner conductors
 - Weaker transistors
Possible Post-Silicon Tampering

- Modify operating conditions
 - Temperature
 - Power
 - Frequency
 - Radiation

- Use FIB to cut or create connections

- Force “illegal” operations
 - Invalid or undocumented instructions
 - Create protocol errors
 - Denial of service
 - Access functional data via debug or test operation
Complex Attack Scenarios

1.
 - Modify netlist or layout to insert an unconnected Trojan (using spare gates)
 - FIB tampering to connect the Trojan to functional logic
 - Trojan activated post-deployment
 - at some future time (time bomb)
 - triggered by an event (booby trap)

2.
 - Modify clock logic and debug/test logic
 - Stop clock during normal operation and
 - Use scan chains to extract critical data from registers
 - Use RAM BIST to extract critical data from memory
The IC security problem
Possible solutions?
An interesting technology
A new approach
Conclusions
Can These Provide Solutions?

- **Off-line hardware manufacturing test**
 - NO: Trojans activated after deployment
 - NO: Hidden logic inactive in test mode
 - NO: Hardware tests are based on the known model

- **Pre-silicon design verification**
 - NO: tests are not exhaustive
 - NO: Trojans not activated in the verification models
 - NO: Trojans may be hidden in infrastructure or analog parts

- **Reverse engineering of a suspect IC**
 - NO: only certain ICs may be attacked
 - NO: not scalable (may take too long)
 - NO: may not have a golden reference
Can These Provide Solutions?

- **Formal correctness proofs**
 - NO: may not have the real netlist or RTL
 - NO: silicon may be modified by FIB

- **Compare behavior of suspected chip with golden model**
 - NO: most mismatches do not matter
 - NO: cannot do exhaustive testing
 - NO: may not have a golden reference

- **Thermal analysis and other non-destructive techniques**
 - NO: may not have a golden reference
Golden Model = Illusion

- The highest level RTL model may be corrupted by IP cores with hidden logic
- No golden models for infrastructure logic
- Fabricating the same IC in a secure environment may still be affected by untrusted tools
 - Even if we have a golden chip, behavior comparisons are not practical or reliable
The Bottom Line

- Cannot guarantee that deployed chip does not carry unintended logic
- Unacceptable risk for ICs used in critical missions or infrastructures
- Must do on-line checks (to complement necessary, but not sufficient, pre-deployment checks)
- Use same on-line checks to detect tampering
- After detection, must also provide countermeasures

- What to check?
- How many checks are practically feasible?
Outline

- The IC security problem
- Possible solutions?
- An interesting technology
- A new approach
- Conclusions
DAFCA Technology

- Distributed reconfigurable logic
 - Soft macros inserted at RTL
 - Synthesized together with functional logic
- Provides a reconfigurable infrastructure platform
- Configured and controlled
 - via JTAG
 - from an embedded processor
 - configuration can be done at any time
- Does not interfere with normal operation
- Invisible to the application software
- Reusable for many applications
Applications

- In-system at-speed silicon validation and debug (silicon-proven)
 - Logic analysis
 - On-chip functional test
 - Assertions in silicon
 - In-system scan-based debug
 - Performance monitoring
 - Fault and error injection
 - Hardware-software co-debug

- ...

- Extensions for IC Security
Outline

- The IC security problem
- Possible solutions?
- An interesting technology
- A new approach
- Conclusions
A New Approach to IC Security

- Must defend against attacks in mission mode

- Add **Design-For-Enabling-Security (DEFENSE)** logic for
 - on-line Security Monitors
 - counter-measures to detected attacks

- **DEFENSE** logic should be
 - invisible to the functional logic
 - invisible to the application software
 - impossible to understand by analyzing the netlist

Current DAFCA technology provides the basis to satisfy these requirements
SoC with DEFENSE Logic

SEcURITY COntrol PROcessor

Signal Probe Network

Security Monitor

Hardware Security
Signal Probe Network

- Distributed pipelined MUX network
- Configured on-line to
 - select signals to be monitored
 - connect selected signals to Security Monitors
- Repeatedly configured to analyze different groups of signals
- Connections signals → SPNs → SMs provide redundancy to increase probability of surviving attacks
Security Monitor

- Contains reconfigurable logic resources
- Configured to implement a finite state machine (FSM) to check relations among its input signals
What Do Monitors Check?

- **Security violations**
 - Access to a restricted address space
 - A control signal supposed to be inactive is activated
 - A core responds to a request addressed to another core
 - A core whose clock is turned off has output changes
 - Denial of service
 - Test mode asserted in normal operation

- **General correctness properties**
 - Standard communication protocols (AMBA, PCI, etc)
 - Block-specific
 - Signal-specific
How Many Checks?

- SPNs can be repeatedly configured to bring different groups of signals to be analyzed.
- Security Monitors can be repeatedly configured to implement different checks.
- A group of checks can be run concurrently for a limited interval.
- SECOPRO continuously runs one group of checks at a time.
- Reconfigurability allows time-sharing of hardware for large number of security checks.
Security Control Processor

- Separate from application processors
- Its control logic is configured on power-on (obfuscation)
- Configures and controls SPNs, Monitors, and Signal Controllers
- Performs periodic self-checks of the DEFENSE platform
- Designed with duplicated units to increase probability of surviving attacks
Secure Flash Memory

- Stores encrypted configurations for
 - SECOPRO
 - Security Monitors
 - SPNs
- Key is locally generated by Physically Unclonable Function (PUF)
- Key is not known outside the chip
- Non-volatile memory loaded only in secure environment
Countermeasures

- Need to override signals
- Wrapping signals adds controllability
- Examples of countermeasures against an offending core
 - Disable clocking
 - Power off
 - Continuously reset
- Also need system-level countermeasures
 - Replace with a spare
 - Put the chip in a recovery state
 - Wipe out confidential data
 - Stop operation
DEFENSE Logic Requirements

- Invisible to the functional logic ✓
- Invisible to the application software ✓
- Impossible to understand by analyzing the netlist ✓
 - It’s gates and flip-flops (no hard macros)
 - Its function is “not there” without configuration bits

DEFENSE logic and functional logic are interspersed
⇒ the functional logic is also more difficult to understand
Outline

- The IC security problem
- Possible solutions?
- An interesting technology
- A new approach
- Conclusions
A New Approach to Hardware Security (1)

We propose the configurable DEFENSE platform

- Natural extension of our commercial solution
- Effectively invisible
- Performs a large numbers of complex on-line security checks
- Detects a large spectrum of security attacks (Trojans, tampering, time bombs, booby traps, deterioration)
- Complements pre-deployment solutions
A New Approach to Hardware Security (2)

Reconfigurable DEFENSE platform for SoCs

- Application-independent and technology-independent
- Supports user-defined countermeasures
- Can accommodate new checkers for new threats (remote reconfiguration)
- Equally applicable to ASICs, ASSPs, and FPGAs